Chinese Bulletin of Botany ›› 2020, Vol. 55 ›› Issue (4): 430-441.DOI: 10.11983/CBB19204
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Caixia Zhang,Gaopeng Yuan,Xiaolei Han,Wuxing Li,Peihua Cong()
Received:
2019-10-18
Accepted:
2020-04-26
Online:
2020-07-01
Published:
2020-05-21
Contact:
Peihua Cong
Caixia Zhang,Gaopeng Yuan,Xiaolei Han,Wuxing Li,Peihua Cong. Proteome Analysis of Different Resistant Apple Cultivars in Response to the Stress of Ring Rot Disease[J]. Chinese Bulletin of Botany, 2020, 55(4): 430-441.
Accession No. | Forward primer (5'-3') | Reverse primer (5'-3') |
---|---|---|
gi|657977120 | TCACCTTAGCCATCTTCTTCGC | TGCTAACTCGAACCCTGTGG |
gi|658027651 | CTCCACTGTGCCTATTGCGA | GAGCCGGGTTAGCGAACAA |
gi|658061109 | TTGATGCCAGCCCTGCAAAT | GGGCTTGAAGCTCGTTGTTG |
gi|661567324 | GATTGCACCCCAGGCAATCA | TTGTGCTTCACGTAGCCGTA |
gi|658009573 | AGGCATTCCCTCAGGACTAC | TTCCGACTTCATCCACTGC |
MdActin | TGACCGAATGAGCAAGGAAATTACT | TACTCAGCTTTGGCAATCCACATC |
Table 1 Primers used in fluorescent quantitative PCR
Accession No. | Forward primer (5'-3') | Reverse primer (5'-3') |
---|---|---|
gi|657977120 | TCACCTTAGCCATCTTCTTCGC | TGCTAACTCGAACCCTGTGG |
gi|658027651 | CTCCACTGTGCCTATTGCGA | GAGCCGGGTTAGCGAACAA |
gi|658061109 | TTGATGCCAGCCCTGCAAAT | GGGCTTGAAGCTCGTTGTTG |
gi|661567324 | GATTGCACCCCAGGCAATCA | TTGTGCTTCACGTAGCCGTA |
gi|658009573 | AGGCATTCCCTCAGGACTAC | TTCCGACTTCATCCACTGC |
MdActin | TGACCGAATGAGCAAGGAAATTACT | TACTCAGCTTTGGCAATCCACATC |
Figure 1 Comparison of morphological characteristics of resistant and susceptible apple cultivars Huayue and Golden Delicious in response to ring rot disease R: Resistant cultivar Huayue; S: Susceptible cultivar Golden Delicious. Bars=1 cm
Figure 2 Distribution of differentially expressed proteins (DEPs) of apple leaves susceptible and resistant to ring rot disease, respectively R: Resistant cultivar Huayue; S: Susceptible cultivar Golden Delicious
Figure 3 Enriched Gene Ontology (GO) analysis of differentially expressed proteins (DEPs) in apple leaves resistant and susceptible to ring rot disease, respectively
No. | Pathway | Pathway ID | DEPs with pathway annotation (326 in total) | All proteins with pathway annotation (14916 in total) | P-value |
---|---|---|---|---|---|
1 | Fatty acid biosynthesis | ko00061 | 2 (0.61%) | 19 (0.13%) | 0.011 |
2 | Fatty acid elongation | ko00062 | 3 (0.92%) | 9 (0.06%) | 0.040 |
3 | Arginine biosynthesis | ko00220 | 2 (0.61%) | 16 (0.11%) | 0.050 |
4 | Alanine, aspartate and glutamate metabolism | ko00250 | 2 (0.61%) | 23 (0.15%) | 0.037 |
5 | Cyanoamino acid metabolism | ko00460 | 2 (0.61%) | 20 (0.13%) | 0.022 |
6 | Other glycan degradation | ko00511 | 2 (0.61%) | 14 (0.09%) | 0.011 |
7 | Monoterpenoid biosynthesis | ko00902 | 5 (1.53%) | 12 (0.08%) | 0.035 |
8 | Sesquiterpenoid and triterpenoid biosynthesis | ko00909 | 1 (0.31%) | 2 (0.01%) | 0.027 |
9 | Nitrogen metabolism | ko00910 | 4 (1.23%) | 28 (0.19%) | 0.014 |
10 | Sulfur metabolism | ko00920 | 1 (0.31%) | 12 (0.08%) | 0.036 |
11 | Phenylpropanoid biosynthesis | ko00940 | 3 (0.92%) | 47 (0.32%) | 0.041 |
12 | Isoquinoline alkaloid biosynthesis | ko00950 | 2 (0.61%) | 16 (0.11%) | 0.028 |
13 | Biosynthesis of unsaturated fatty acids | ko01040 | 2 (0.61%) | 9 (0.06%) | 0.016 |
14 | Fatty acid metabolism | ko01212 | 2 (0.61%) | 32 (0.21%) | 0.030 |
15 | Ribosome | ko03010 | 13 (3.99%) | 200 (1.34%) | 0.005 |
16 | RNA transport | ko03013 | 2 (0.61%) | 33 (0.22%) | 0.031 |
17 | Homologous recombination | ko03440 | 1 (0.31%) | 5 (0.03%) | 0.039 |
18 | Circadian rhythm-plant | ko04712 | 3 (0.92%) | 9 (0.06%) | 0.026 |
Table 2 KEGG pathways analysis of differentially expressed proteins (DEPs)
No. | Pathway | Pathway ID | DEPs with pathway annotation (326 in total) | All proteins with pathway annotation (14916 in total) | P-value |
---|---|---|---|---|---|
1 | Fatty acid biosynthesis | ko00061 | 2 (0.61%) | 19 (0.13%) | 0.011 |
2 | Fatty acid elongation | ko00062 | 3 (0.92%) | 9 (0.06%) | 0.040 |
3 | Arginine biosynthesis | ko00220 | 2 (0.61%) | 16 (0.11%) | 0.050 |
4 | Alanine, aspartate and glutamate metabolism | ko00250 | 2 (0.61%) | 23 (0.15%) | 0.037 |
5 | Cyanoamino acid metabolism | ko00460 | 2 (0.61%) | 20 (0.13%) | 0.022 |
6 | Other glycan degradation | ko00511 | 2 (0.61%) | 14 (0.09%) | 0.011 |
7 | Monoterpenoid biosynthesis | ko00902 | 5 (1.53%) | 12 (0.08%) | 0.035 |
8 | Sesquiterpenoid and triterpenoid biosynthesis | ko00909 | 1 (0.31%) | 2 (0.01%) | 0.027 |
9 | Nitrogen metabolism | ko00910 | 4 (1.23%) | 28 (0.19%) | 0.014 |
10 | Sulfur metabolism | ko00920 | 1 (0.31%) | 12 (0.08%) | 0.036 |
11 | Phenylpropanoid biosynthesis | ko00940 | 3 (0.92%) | 47 (0.32%) | 0.041 |
12 | Isoquinoline alkaloid biosynthesis | ko00950 | 2 (0.61%) | 16 (0.11%) | 0.028 |
13 | Biosynthesis of unsaturated fatty acids | ko01040 | 2 (0.61%) | 9 (0.06%) | 0.016 |
14 | Fatty acid metabolism | ko01212 | 2 (0.61%) | 32 (0.21%) | 0.030 |
15 | Ribosome | ko03010 | 13 (3.99%) | 200 (1.34%) | 0.005 |
16 | RNA transport | ko03013 | 2 (0.61%) | 33 (0.22%) | 0.031 |
17 | Homologous recombination | ko03440 | 1 (0.31%) | 5 (0.03%) | 0.039 |
18 | Circadian rhythm-plant | ko04712 | 3 (0.92%) | 9 (0.06%) | 0.026 |
Figure 4 Subcellular localization of differentially expressed proteins (DEPs) in apple leaves resistant and susceptible to ring rot disease, respectively Chlo: Chloroplast; Cysk: Cytoskeleton; Cyto: Cytosol; Extr: Extracellular; Mito: Mitochondria; Nucl: Nucleus; Plas: Plasma membrane; Vacu: Vacuolar membrane
Figure 5 Quantitative real-time PCR analysis of genes encoding key resistance-related proteins in apple leaves resistance and susceptible to ring rot disease (A) A gene encoding a thaumatin (MD04G1018400); (B) The gene encoding Mal d1 (MD16G1160700); (C) A gene encoding a beta-1,3-glucosidase (MD11G1189000); (D) A gene encoding a polyphenol oxidase (MD10G1299100); (E) The gene encoding MLP423 (MD16G1088600). R: Resistant cultivars Huayue; S: Susceptible cultivars Golden Delicious; Different lowercase letters indicate significant differences between resistant and susceptible cultivars (P<0.05).
[1] | 林月莉, 黄丽丽, 索朗拉姆, 高小宁, 陈银潮, 康振生 (2011). 苹果轮纹病室内快速评价体系的建立. 植物保护学报 38, 37-41. |
[2] | 孙天骅, 李佳, 王涛, 牛宁, 徐继忠 (2018). 抗病与感病苹果叶片应答轮纹病菌侵染的蛋白质表达差异分析. 园艺学报 45, 409-420. |
[3] | 肖龙, 张彩霞, 宗泽冉, 田义, 张利义, 丛佩华 (2016). 苹果叶片应答轮纹病菌胁迫的叶绿体蛋白质组学分析. 果树学报 33, 1357-1366. |
[4] | 徐鹏飞, 王萍, 吴俊江, 张淑珍, 范素杰, 李宁辉, 王欣, 陈晨, 李文滨 (2010). 疫霉根腐病菌毒素对大豆不同组织中多酚氧化酶的影响. 作物杂志 ( 2), 28-31. |
[5] | 杨丽丽, 庄艳, 王忆, 张新忠, 韩振海 (2012). 不同抗性苹果果实受轮纹病菌侵染后亚显微结构的变化. 园艺学报 39, 963-969. |
[6] | 杨振英, 康国栋, 王强, 薛光荣, 张利义, 田义, 杨玲, 张彩霞, 李武兴, 丛佩华 (2010). 黄色苹果新品种‘华月’. 园艺学报 37, 1877-1878. |
[7] | 张彩霞, 田义, 张利义, 肖龙, 康国栋, 丛佩华 (2015). 苹果枝条表皮应答轮纹病菌侵染的蛋白质组学分析. 植物病理学报 45, 280-287. |
[8] | 张彩霞, 袁高鹏, 韩晓蕾, 田义, 张利义, 丛佩华 (2018). 基于iTRAQ定量蛋白质组技术筛选‘华月’苹果斑点落叶病抗性相关蛋白. 植物病理学报 48, 787-798. |
[9] | 张计育, 渠慎春, 薛华柏, 高志红, 郭忠仁, 章镇 (2012). 北海棠病程相关蛋白MhPR8基因的克隆与表达. 中国农业科学 45, 1568-1575. |
[10] | 张玉经, 王昆, 王忆, 韩振海, 高源, 许雪峰, 张新忠 (2010). 苹果种质资源果实轮纹病抗性的评价. 园艺学报 37, 539-546. |
[11] | 周增强, 侯珲, 王丽, 朱发亮 (2010). 枝干苹果轮纹病人工接种方法与品种抗性评价. 果树学报 27, 952-955. |
[12] | 宗泽冉, 田义, 张利义, 韩晓蕾, 张彩霞, 丛佩华 (2017). 抗苹果斑点落叶病基因Mal d1的克隆及功能鉴定. 园艺学报 44, 343-354. |
[13] | Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol Plant 122, 419-428. |
[14] |
Berger S, Sinha AK, Roitsch T (2007). Plant physiology meets phytopathology: plant primary metabolism and plant pathogen interactions. J Exp Bot 58, 4019-4026.
DOI URL PMID |
[15] | Borges LL, Santana FA, Castro ISL, Arruda KMA, de Oliveira Ramos HJ, Moreira MA, de Barros EG (2013). Differentially expressed proteins during an incompatible interaction between common bean and the fungus Pseudocercospora griseola. Mol Breed 32, 933-942. |
[16] |
Breiteneder H, Ebner C (2000). Molecular and biochemical classification of plant-derived food allergens. J Allergy Clin Immunol 106, 27-36.
DOI URL PMID |
[17] | Chen Y, Zhang C, Cong P (2012a). Dynamics of growth regulators during infection of apple leaves by Alternaria alternata apple pathotype. Australas Plant Pathol 41, 247-253. |
[18] |
Chen Z, Wang QH, Lin L, Tang Q, Edwards JL, Li SW, Liu SQ (2012b). Comparative evaluation of two isobaric labeling tags, DiART and iTRAQ. Anal Chem 84, 2908-2915.
DOI URL PMID |
[19] |
Christensen JH, Bauw G, Welinder KG, van Montagu M, Boerjan M (1998). Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol 118, 125-135.
DOI URL PMID |
[20] |
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SMN, Baier M, Finkemeier I (2006). The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57, 1697-1709.
DOI URL PMID |
[21] |
Dinakar C, Djilianov D, Bartels D (2012). Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense. Plant Sci 182, 29-41.
URL PMID |
[22] | Eccher G, Ferrero S, Populin F, Colombo L, Botton A (2014). Apple(Malus domestica L. Borkh) as an emerging model for fruit development. Plant Biosyst 148, 157-168. |
[23] |
Erickson BK, Jedrychowski MP, Mcalister GC, Everley RA, Kunz R, Gygi SP (2015). Evaluating multiplexed quantitative phosphopeptide analysis on a hybrid quadrupole mass filter/linear ion trap/orbitrap mass spectrometer. Anal Chem 87, 1241-1249.
DOI URL PMID |
[24] | Fan HK, Wang F, Gao H, Wang LC, Xu JH, Zhao ZY (2011). Pathogen-induced MdWRKY1 in ‘Qinguan’ apple enhances disease resistance. J Plant Biol 54, 150-158. |
[25] | Golba B, Treutter D, Kollar A (2012). Effects of apple (Malus × domestica Borkh.) phenolic compounds on proteins and cell wall-degrading enzymes of Venturia inaequalis. Trees 26, 131-139. |
[26] | Grover A (2012). Plant chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci 31, 57-73. |
[27] | Jurick II WM, Janisiewicz WJ, Saftner RA, Vico I, Gaskins VL, Park E, Forsline PL, Fazio G, Conway WS (2011). Identification of wild apple germplasm(Malus spp.) accessions with resistance to the postharvest decay pathogens Penicillium expansum and Colletotrichum acutatum. Plant Breed 130, 481-486. |
[28] | Kim BG, Fukumoto T, Tatano S, Gomi K, Ohtani K, Tada Y, Akimitsu K (2009). Molecular cloning and characterization of a thaumatin-like protein-encoding cDNA from rough lemon. Physiol Mol Plant Pathol 74, 3-10. |
[29] |
Kornas A, Kuźniak E, Slesak I, Miszalski I (2010). The key role of the redox status in regulation of metabolism in photosynthesizing organisms. Acta Biochim Pol 57, 143-151.
URL PMID |
[30] |
Li L, Steffens JC (2002). Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215, 239-247.
DOI URL PMID |
[31] |
Li MM, Xu JH, Qiu ZH, Zhang J, Ma FW, Zhang JK (2014). Screening and identification of resistance related proteins from apple leaves inoculated with Marssonina coronaria(EII. & J. J. Davis). Proteome Sci 12, 7.
DOI URL PMID |
[32] |
Li ZT, Dhekney SA, Grad DJ (2011). PR-1 gene family of grapevine: a uniquely duplicated PR-1 gene from a Vitis interspecific hybrid confers high level resistance to bacterial disease in transgenic tobacco. Plant Cell Rep 30, 1-11.
DOI URL |
[33] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408.
DOI URL PMID |
[34] |
Mazzeo MF, Cacace G, Ferriello F, Puopolo G, Zoina A, Ercolano MR, Siciliano RA (2014). Proteomic investigation of response to forl infection in tomato roots. Plant Physiol Biochem 74, 42-49.
DOI URL PMID |
[35] |
Ni WC, Zhu LM, Sha RH, Tao JM, Cai BH, Wang SH (2017). Comparative iTRAQ proteomic profiling of susceptible and resistant apple cultivars infected by Alternaria alternata apple pathotype. Tree Genet Genomes 13, 23.
DOI URL |
[36] |
Ogata T, Sano T, Harada Y (2000). Botryosphaeria spp. isolated from apple and several deciduous fruit trees are divided into three groups based on the production of warts on twigs, size of conidia, and nucleotide sequences of nuclear ribosomal DNA ITS regions. Mycoscience 41, 331-337.
DOI URL |
[37] |
Paulo JA, McAllister FE, Everley RA, Beausoleil SA, Bank AS, Gygi SP (2015). Effects of MEK inhibitors GSK1120212 and PD0325901 in vivo using 10-plex quantitative proteomics and phosphoproteomics. Proteomics 15, 462-473.
DOI URL PMID |
[38] |
Ramsubramaniam N, Tao F, Li SW, Marten MR (2013). Cost-effective isobaric tagging for quantitative phosphoproteomics using DiART reagents. Mol Biosyst 9, 2981-2987.
DOI URL |
[39] |
Savitski MM, Wilhelm M, Hahne H, Kuster B, Bantscheff M (2015). A scalable approach for protein false discovery rate estimation in large proteomic data sets. Mol Cell Proteom 14, 2394-2404.
DOI URL |
[40] |
Sun H, Kim MK, Pulla RK, Kim YJ, Yang DC (2010). Isolation and expression analysis of a novel major latex-like protein (MLP151) gene from Panax ginseng. Mol Biol Rep 37, 2215-2222.
DOI URL PMID |
[41] |
Thipyapong P, Hunt MD, Steffens JC (2004). Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220, 105-117.
DOI URL |
[42] |
Wang YP, Yang L, Chen X, Ye TT, Zhong B, Liu RJ, Wu Y, Chan ZL (2016). Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana. J Exp Bot 67, 421-434.
DOI URL PMID |
[43] |
Wen B, Zhou R, Feng Q, Wang QH, Wang J, Liu SQ (2014). IQuant: an automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics 14, 2280-2285.
URL PMID |
[44] |
Xing LL, Sun LN, Liu SL, Li XN, Zhang LB, Yang HS (2017). IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus. Comp Biochem Physiol Part D Genomics Proteomics 23, 17-26.
DOI URL PMID |
[45] | Xu C, Wang CS, Ju LL, Zhang R, Biggs AR, Tanaka E, Li BZ, Sun GY (2015). Multiple locus genealogies and phenotypic characters reappraise the causal agents of apple ring rot in China. Fungal Divers 71, 215-231. |
[46] |
Zhang CX, Tian Y, Cong PH (2015). Proteome analysis of pathogen-responsive proteins from apple leaves induced by the Alternaria blotch Alternaria alternata. PLoS One 10, e0122233.
DOI URL PMID |
[1] | LU Chen-Xi, XU Man, SHI Xue-Jin, ZHAO Cheng, TAO Ze, LI Min, SI Bing-Cheng. Effects of different water isotope input methods based on Bayesian model MixSIAR on water uptake characteristic analysis results in apple orchards [J]. Chin J Plant Ecol, 2023, 47(2): 238-248. |
[2] | Na Zhang,Xiuxia Liu,Xuesen Chen,Shujing Wu. Identifying Genes Responsive to Jasmonates in Apple Based on Transcriptome Analysis [J]. Chinese Bulletin of Botany, 2019, 54(6): 733-743. |
[3] | Caixia Zhang, Yi Tian, Liyi Zhang, Long Xiao, Peihua Cong. Extraction and Separation Analysis of Total Protein from the Bark of Apple Branches [J]. Chinese Bulletin of Botany, 2015, 50(6): 739-745. |
[4] | Yuanbao Cai, Xiangyan Yang, Guangming Sun, Qiang Huang, Yeqiang Liu, Shaopeng Li, Zhili Zhang. Cloning of Flowering-related Gene AcMADS1 and Characterization of Expression in Tissues of Pineapple (Ananas comosus) [J]. Chinese Bulletin of Botany, 2014, 49(6): 692-703. |
[5] | ZHANG Yi, XIE Yong-Sheng, JU Yan, WANG Hui. Effects of controlling apple orchard productivity on soil moisture and photosynthetic characteristics [J]. Chin J Plant Ecol, 2010, 34(8): 973-978. |
[6] | YANG Qi-Liang, ZHANG Fu-Cang, LIU Xiao-Gang, YANG Zhen-Yu. EFFECTS OF DRIP IRRIGATION MODE AND NaCl CONCENTRATION ON GROWTH AND HYDRAULIC CONDUCTANCE OF APPLE SEEDLINGS [J]. Chin J Plant Ecol, 2009, 33(4): 824-832. |
[7] | Yi Tian;Xinzhong Zhang;Zhihong Zhang;Peihua Cong*;Guodong Kang . Analysis of Non-gel Sieving Capillary Electrophoresis in Protein Changes Pattern in Development Phase Shift in Apple [J]. Chinese Bulletin of Botany, 2008, 25(05): 585-590. |
[8] | ZHANG Guang-Can, LIU Xia, HE Kang-Ning, WANG Bai-Tian. Responses of Gas Exchange Parameters of Goldspur Apple Tree to Soil Water Variation [J]. Chin J Plan Ecolo, 2004, 28(1): 66-72. |
[9] | LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits [J]. Chinese Bulletin of Botany, 2002, 19(06): 739-742. |
[10] | Li-Xia CHENG Ping. Study on Tissue Culture and Macropropagation of Peeling-pineapple [J]. Chinese Bulletin of Botany, 2002, 19(02): 231-233. |
[11] | GUAN Jun-Feng. Effects of Calcium Ion on Cell Membrane Permeability, Activities of Protective Enzymes and Content of Protective Substances in Apple Fruits [J]. Chinese Bulletin of Botany, 1999, 16(01): 72-74. |
[12] | Wu Gang, Feng Zong-wei, Qin Yi-zhe. Study on the Functional Characteristics of Apple/Crops Intercropping Agroforestry Systems [J]. Chin J Plan Ecolo, 1994, 18(3): 243-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||