Chinese Bulletin of Botany ›› 2025, Vol. 60 ›› Issue (5): 816-830.DOI: 10.11983/CBB24135 cstr: 32102.14.CBB24135
• RESEARCH ARTICLES • Previous Articles Next Articles
Huang Yuxin1, Xie Tao2, Wang Xingfen3, Guo Huiming2, Cheng Hongmei2, Ma Bojun1, Chen Xifeng1,*(), Su Xiaofeng2,*(
)
Received:
2024-09-04
Accepted:
2024-10-30
Online:
2025-09-10
Published:
2024-11-15
Contact:
*E-mail: Huang Yuxin, Xie Tao, Wang Xingfen, Guo Huiming, Cheng Hongmei, Ma Bojun, Chen Xifeng, Su Xiaofeng. Functional Verification of GhDIR1 Gene Against Verticillium Wilt in Cotton[J]. Chinese Bulletin of Botany, 2025, 60(5): 816-830.
Primer names | Primer sequences (5′-3′) |
---|---|
GhDIR1-F | ATGGCAGCTGCAATGAAACTC |
GhDIR1-R | TCAAGGAAGTGTATATGCTCCAC |
qGhDIR1-F | CCTGGGAAAGGTGGTTGATG |
qGhDIR1-R | TCTCAGGCTTGATTCCAGATGC |
qGhCHS-F | GCTGCTGTTATAGTAGGTGCGGATC |
qGhCHS-R | CTCAGCTAGGCTCTTTTCAATGTTC |
qGhDFR-F | GCTCTGGGTTCATTGGTTCATGG |
qGhDFR-R | CCTCTTCAGCTAAATCTGCTTTCC |
qGhCAD-F | CCTGGCATTTGGGGAGATATCTTC |
qGhCAD-R | GACACCCAACCTTTGGACTGC |
qGhSEQ-F | GCAAAGGAGAATGCTCGCCTG |
qGhSEQ-R | CCTGGCTGCAACAGTTCTCCAAC |
qGhLOX-F | GATCGTGCTTGATGGTCTCACTG |
qGhLOX-R | CGTTCCCTCTCAATGCCTGC |
qGhAOC-F | CGGATAGGAATAACAGCAGGGATG |
qGhAOC-R | GCCAGATCCACCAGTAATAGCG |
Vd-ITS-F | TCCGTAGGTGAACCTGCGG |
Vd-ITS-R | TCCTCCGCTTATTGATATGC |
GhDIR1-VIGS-F | TCTGTGAGTAAGGTTACC GAATTCG- TTCTGGGATTGATTGTGCTTATT |
GhDIR1-VIGS-R | ACGCGTGAGCTCGGTACC GGAT C C- ATGCTCCACATCTGTAACCGACT |
p1132-GhDIR1-F | TCTGTGAGTAAGGTTACC GAATTCC- CTGGGAAAGGTGGTTGATG |
p1132-GhDIR1-R | ACGCGTGAGCTCGGTACC GGATCC- TCTCAGGCTTGATTCCAGATGC |
UBQ-F | AGCTCGGATACGATTGATAACG |
UBQ-R | GAAGACGAAGAACAAGGGGAAG |
Table 1 Primer sequences used in this study
Primer names | Primer sequences (5′-3′) |
---|---|
GhDIR1-F | ATGGCAGCTGCAATGAAACTC |
GhDIR1-R | TCAAGGAAGTGTATATGCTCCAC |
qGhDIR1-F | CCTGGGAAAGGTGGTTGATG |
qGhDIR1-R | TCTCAGGCTTGATTCCAGATGC |
qGhCHS-F | GCTGCTGTTATAGTAGGTGCGGATC |
qGhCHS-R | CTCAGCTAGGCTCTTTTCAATGTTC |
qGhDFR-F | GCTCTGGGTTCATTGGTTCATGG |
qGhDFR-R | CCTCTTCAGCTAAATCTGCTTTCC |
qGhCAD-F | CCTGGCATTTGGGGAGATATCTTC |
qGhCAD-R | GACACCCAACCTTTGGACTGC |
qGhSEQ-F | GCAAAGGAGAATGCTCGCCTG |
qGhSEQ-R | CCTGGCTGCAACAGTTCTCCAAC |
qGhLOX-F | GATCGTGCTTGATGGTCTCACTG |
qGhLOX-R | CGTTCCCTCTCAATGCCTGC |
qGhAOC-F | CGGATAGGAATAACAGCAGGGATG |
qGhAOC-R | GCCAGATCCACCAGTAATAGCG |
Vd-ITS-F | TCCGTAGGTGAACCTGCGG |
Vd-ITS-R | TCCTCCGCTTATTGATATGC |
GhDIR1-VIGS-F | TCTGTGAGTAAGGTTACC GAATTCG- TTCTGGGATTGATTGTGCTTATT |
GhDIR1-VIGS-R | ACGCGTGAGCTCGGTACC GGAT C C- ATGCTCCACATCTGTAACCGACT |
p1132-GhDIR1-F | TCTGTGAGTAAGGTTACC GAATTCC- CTGGGAAAGGTGGTTGATG |
p1132-GhDIR1-R | ACGCGTGAGCTCGGTACC GGATCC- TCTCAGGCTTGATTCCAGATGC |
UBQ-F | AGCTCGGATACGATTGATAACG |
UBQ-R | GAAGACGAAGAACAAGGGGAAG |
Figure 1 Physicochemical properties of GhDIR1 and analysis of cis-acting element of the GhDIR1 gene promoter (A) Hydrophilicity analysis of GhDIR1 protein; (B) GhDIR1 structural domain analysis; (C) Tertiary structure prediction of GhDIR1 protein; (D) Transmembrane structural domain prediction of GhDIR1 protein; (E) Analysis of cis-acting element of the GhDIR1 gene promoter
Figure 2 Genome collinearity analysis of GhDIR1 Dark blue regions represent the chromosomes of Gossypium hirsutum. The gray lines depict all collinear pairs across the 26 chromosomes. The red lines highlight collinear gene pairs associated with segmental duplications of the target gene. The innermost and outermost light blue rings illustrate two distinct representations of gene density.
Figure 3 Expression of GhDIR1 in cotton inoculated with Verticillium dahliae Heat map analysis of GhDIR1 gene expressions in different organs (roots, stems) and different inoculation times (0, 0.5, 1, 2, 4, 8, and 12 h) of Gossypium hirsutum with V. dahliae. The color from blue to yellow indicates low to high level of expression.
Figure 4 Subcellular localization of GhDIR1 The fusion proteins GFP and GhDIR1-GFP were co-localized with the PM-mCherry membrane localization marker in tobacco. The GFP and GhDIR1-GFP fusion proteins exhibited green fluorescence in the green fluorescence channel, while the PM-mCherry membrane localization marker displayed red fluorescence in the mCherry channel only. (A) GFP subcellular localization map (bars=20 μm); (B) GhDIR1-GFP subcellular localization map (bars=10 μm)
Figure 5 Detection of GhDIR1 gene silencing efficiency and the resistant analysis of GhDIR1 silenced seedlings against cotton Verticillium wilt (A) TRV2::CLA1 plants (bar=5 cm); (B) Gene expression of GhDIR1 in silenced cotton plants (three biological replicates (n=3); ANOVA was used for the statistical analysis; *** P<0.001); (C) Phenotype of TRV2::00 and TRV2::GhDIR1 plants at 14 days post inoculation (dpi) with Verticillium dahliae (bar=5 cm); (D) Stem phenotype of TRV2::00 and TRV2::GhDIR1 plants at 14 dpi with V. dahliae (bar=1 cm); (E) Statistical analysis of disease index in cotton plants of TRV2::00 and TRV2::GhDIR1 at 14 dpi (grades 1-4 represent disease severity classifications. 1: Cotyledons turn yellow, no symptoms on true leaves; 2: All cotyledons show symptoms, 1-3 true leaves show necrosis or chlorosis; 3: More than 5 cotton leaves, including cotyledons, show symptoms; 4: All leaves show symptoms, and leaves fall off/plant dies); (F) Fungal biomass of TRV2::00 and TRV2::GhDIR1 plants at 14 dpi with V. dahliae (three biological replicates (n=3); ANOVA was used for the statistical analysis; *** P<0.001)
Figure 6 RNA-seq comparison between TRV2::00 and TRV2::GhDIR1 cottons (A) Heat map of differentially expressed genes (DEGs) in each sample; (B) Volcano map of DEGs; (C) GO terms; (D) KEGG terms. WT: Wild type; VIGS: Virus-induced gene silencing plant; BP: Biological process; CC: Cellular component; MF: Molecular function
Figure 7 qRT-PCR verification of the expression levels of six key differentially expressed genes (DEGs) The blue bars represent the relative expression levels of genes in TRV2::00, normalized to 1, serving as the control group. The purple bars indicate the relative expression levels of genes in TRV2::GhDIR1. Three biological replicates (n= 3). ANOVA was used for the statistical analysis. ** P<0.01; *** P<0.001
[1] | Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16, 3460-3479. |
[2] |
Chen B, Zhang Y, Yang J, Zhang M, Ma QM, Wang XF, Ma ZY (2021). The G-protein α subunit GhGPA positively regulates Gossypium hirsutum resistance to Verticillium dahliae via induction of SA and JA signaling pathways and ROS accumulation. Crop J 9, 823-833.
DOI |
[3] | Chen LB, Ji CH, Zhou DG, Gou X, Tang JN, Jiang YJ, Han JL, Liu YG, Chen LY, Xie YY (2022). OsLTP47 may function in a lipid transfer relay essential for pollen wall development in rice. J Genet Genomics 49, 481-491. |
[4] | Dai PH, Hu ZY, Li XQ, Lei JF, Liu C, Liu XD, Li Y (2022). Cloning and functional analysis of GhMYB6 gene related to cotton Verticillium wilt resistance. J South Agric 53, 3020-3027. (in Chinese) |
代培红, 胡子曜, 李秀青, 雷建峰, 刘超, 刘晓东, 李月 (2022). 棉花黄萎病相关基因GhMYB6的克隆与功能分析. 南方农业学报 53, 3020-3027. | |
[5] | David L, Kang JN, Nicklay J, Dufresne C, Chen SX (2021). Identification of DIR1-dependant cellular responses in guard cell systemic acquired resistance. Front Mol Biosci 8, 746523. |
[6] | Dong YM, Zhang WY, Ling ZY, Li JR, Bai HT, Li H, Shi L (2020). Advances in transcription factors regulating plant terpenoids biosynthesis. Chin Bull Bot 55, 340-350. (in Chinese) |
董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷 (2020). 转录因子调控植物萜类化合物生物合成研究进展. 植物学报 55, 340-350.
DOI |
|
[7] | Fan YP, Zhang YX, Rui C, Xu N, Zhang H, Wang J, Malik WA, Han MG, Zhao LJ, Lu XK, Chen XG, Chen C, Ye WW (2021). Zinc finger transcription factor ZAT family genes confer multi-tolerances in Gossypium hirsutum L. J Cotton Res 4, 24. |
[8] | Fradin EF, Thomma BPHJ (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7, 71-86. |
[9] |
Gao SQ, Shao WK, Zhao Z, Shao PX, Hu WR, Huang QS (2023). Functional analysis of cotton calcineurin B-like protein GhCBL3-A01 in regulating the resistance to Verticillium wilt. Cotton Sci 35, 447-458. (in Chinese)
DOI |
高升旗, 邵武奎, 赵准, 邵盘霞, 胡文冉, 黄全生 (2023). 类钙调磷酸酶B亚基蛋白GhCBL3-A01调控棉花黄萎病抗性的功能分析. 棉花学报 35, 447-458.
DOI |
|
[10] | Gautam H, Sharma A, Trivedi PK (2023). The role of flavonols in insect resistance and stress response. Curr Opin Plant Biol 73, 102353. |
[11] | Gfeller A, Dubugnon L, Liechti R, Farmer EE (2010). Jasmonate biochemical pathway. Sci Signal 3, cm3. |
[12] | Harms K, Atzorn R, Brash A, Kuhn H, Wasternack C, Willmitzer L, Pena-Cortes H (1995). Expression of a flax allene oxide synthase cDNA leads to increased endogenous jasmonic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes. Plant Cell 7, 1645-1654. |
[13] | Hu XQ, Shi ZY, Zhu YT, Gao LY, Wang P, Wang HW, Hou YX (2023). Mechanism of the cotton GhRAR1 gene regulating the resistance of cotton to Verticillium wilt. Plant Prot 49(2), 39-47, 56. (in Chinese) |
胡晓倩, 石志钰, 朱玉涛, 高琳颖, 王平, 王宏伟, 侯玉霞 (2023). 棉花GhRAR1基因调控棉花抗黄萎病机理的研究. 植物保护 49(2), 39-47, 56. | |
[14] | Hu ZY, Li XQ, Dai PH, Lei JF, Liu JF, Zhao Y, Deng JH, Liu C, Liu XD, Li Y (2022). Functional verification of GhP450-94C1 that a Verticillium wilt resistant gene in Gossypium hirsutum L. Acta Agric Bor-Sin 37(6), 72-81. (in Chinese) |
胡子曜, 李秀青, 代培红, 雷建峰, 柳建飞, 赵燚, 邓嘉辉, 刘超, 刘晓东, 李月 (2022). 陆地棉细胞色素P450基因GhP450-94C1黄萎病抗性功能验证. 华北农学报 37(6), 72-81.
DOI |
|
[15] |
Huang H, Liu B, Liu LY, Song SS (2017). Jasmonate action in plant growth and development. J Exp Bot 68, 1349-1359.
DOI PMID |
[16] | Huang Y, Xie FJ, Cao X, Li MY (2021). Research progress in biosynthesis and regulation of plant terpenoids. Biotechnol Biotechnol Equip 35, 1799-1808. |
[17] |
Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni XZ, Rocca JR, Alborn HT, Teal PEA, Schmelz EA (2011). Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156, 2082-2097.
DOI PMID |
[18] | Jacq A, Pernot C, Martinez Y, Domergue F, Payré B, Jamet E, Burlat V, Pacquit VB (2017). The Arabidopsis lipid transfer protein 2 (AtLTP2) is involved in cuticle-cell wall interface integrity and in etiolated hypocotyl permeability. Front Plant Sci 8, 263. |
[19] | Kim J, Lee WJ, Vu TT, Jeong CY, Hong SW, Lee H (2017). High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L. Plant Cell Rep 36, 1215-1224. |
[20] | Kumar V, Nadda G, Kumar S, Yadav SK (2013). Transgenic tobacco overexpressing tea cDNA encoding dihydroflavonol 4-reductase and anthocyanidin reductase induces early flowering and provides biotic stress tolerance. PLoS One 8, e65535. |
[21] | Li MJ (2021). Functional Verification of Cotton GhIQM1, GhNAC90 and GhBsr-d1 Genes in Resistance to Verticillium Wilt. Master’s thesis. Urumqi: Xinjiang Agricultural University. pp. 23-24. (in Chinese) |
李名江 (2021). 棉花GhIQM1、GhNAC90和GhBsr-d1基因在抗黄萎病中的功能验证. 硕士论文. 乌鲁木齐: 新疆农业大学. pp. 23-24. | |
[22] | Liao ZH, Wang L, Li CZ, Cao MJ, Wang JN, Yao ZL, Zhou SY, Zhou GX, Zhang DY, Lou YG (2022). The lipoxygenase gene OsRCI-1 is involved in the biosynthesis of herbivore-induced JAs and regulates plant defense and growth in rice. Plant Cell Environ 45, 2827-2840. |
[23] | Liu DF, Shi SP, Hao ZJ, Xiong WT, Luo MZ (2019). OsbZIP81, a homologue of Arabidopsis VIP1, may positively regulate JA levels by directly targetting the genes in JA signaling and metabolism pathway in rice. Int J Mol Sci 20, 2360. |
[24] | Liu PP, von Dahl CC, Park SW, Klessig DF (2011). Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol 155, 1762-1768. |
[25] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408.
DOI PMID |
[26] |
Lu XR, Jia XY, Niu JH (2018). The present situation and prospects of cotton industry development in China. Sci Agric Sin 51, 26-36. (in Chinese)
DOI |
卢秀茹, 贾肖月, 牛佳慧 (2018). 中国棉花产业发展现状及展望. 中国农业科学 51, 26-36.
DOI |
|
[27] | Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002). A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature 419, 399-403. |
[28] | Mansfeld BN, Colle M, Kang YY, Jones AD, Grumet R (2017). Transcriptomic and metabolomic analyses of cucumber fruit peels reveal a developmental increase in terpenoid glycosides associated with age-related resistance to Phytophthora capsici. Hortic Res 4, 17022. |
[29] | Mo HJ, Wang XF, Zhang Y, Zhang GY, Zhang JF, Ma ZY (2015). Cotton polyamine oxidase is required for spermine and camalexin signaling in the defence response to Verticillium dahliae. Plant J 83, 962-975. |
[30] |
Qanmber G, Lu LL, Liu Z, Yu DQ, Zhou KH, Huo P, Li FG, Yang ZR (2019). Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. J Exp Bot 70, 4721-4736.
DOI PMID |
[31] |
Sanchez S, Demain AL (2008). Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 1, 283-319.
DOI PMID |
[32] |
Seo SB, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D (2001). Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 104, 119-130.
DOI PMID |
[33] | Song RR, Li JP, Xie CJ, Jian W, Yang XY (2020). An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae. Int J Mol Sci 21, 1120. |
[34] | Su XF, Lu GQ, Guo HM, Zhang KX, Li XK, Cheng HM (2018). The dynamic transcriptome and metabolomics profiling in Verticillium dahliae inoculated Arabidopsis thaliana. Sci Rep 8, 15404. |
[35] | Thayale Purayil F, Rajashekar B, Kurup SS, Cheruth AJ, Subramaniam S, Hassan Tawfik N, Amiri KMA (2020). Transcriptome profiling of Haloxylon persicum (Bunge ex Boiss and Buhse) an endangered plant species under PEG-induced drought stress. Genes (Basel) 11, 640. |
[36] | Tholl D (2015). Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148, 63-106. |
[37] | Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, Schroeder JI (2022). Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol 23, 680-694. |
[38] | Wang J, Dong JZ, Chen H, Zheng LS, Wang M (2018). Analysis and forecast of global cotton import and export trade. Cotton Text Technol 46(3), 81-84. (in Chinese) |
王健, 董俊哲, 陈浩, 郑丽莎, 王铭 (2018). 全球棉花进出口贸易分析及展望. 棉纺织技术 46(3), 81-84. | |
[39] | Wang LL, Xu GJ, Li LH, Ruan MY, Bennion A, Wang GL, Li R, Qu SH (2023). The OsBDR1-MPK3 module negatively regulates blast resistance by suppressing the jasmonate signaling and terpenoid biosynthesis pathway. Proc Natl Acad Sci USA 120, e2211102120. |
[40] |
Wang Q, Cao R, Zhang YN, Qi PY, Wang LZ, Fang SM (2021). Biosynthesis and regulation of terpenoids from basidiomycetes: exploration of new research. AMB Express 11, 150.
DOI PMID |
[41] | Wang XF (2007). Studies on Non-Specific Lipid Transfer Protein Receptors on Rice Cell Membranes. PhD dissertation. Shanghai: Fudan University. pp. 64-65. (in Chinese) |
汪笑峰 (2007). 水稻细胞膜上非特异性脂质转移蛋白受体的研究. 博士论文. 上海: 复旦大学. pp. 64-65. | |
[42] | Xie JW, Cao XY, Pan WQ, Du LJ (2024). Advances in plant flavonoid transport and accumulation mechanism. Chin Bull Bot 59, 463-480. (in Chinese) |
谢靖雯, 曹晓云, 潘婉琪, 杜灵娟 (2024). 植物类黄酮转运与积累机制的研究进展. 植物学报 59, 463-480.
DOI |
|
[43] | Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004). Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A. Plant Physiol 135, 507-515. |
[44] |
Yamaguchi Y, Barona G, Ryan CA, Pearce G (2011). GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes. Plant Physiol 156, 932-942.
DOI PMID |
[45] | Yang G, Sun MH, Wang ZF, Hu QY, Guo JJ, Yu J, Lei CZ, Dang RH (2023). Comparative genomics identifies the evolutionarily conserved gene TPM3 as a target of eca-miR-1 involved in the skeletal muscle development of donkeys. Int J Mol Sci 24, 15440. |
[46] | Yang YX, Ahammed GJ, Wu CJ, Fan SY, Zhou YH (2015). Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Curr Protein Pept Sci 16, 450-461. |
[47] |
Yu KS, Soares JM, Mandal MK, Wang CX, Chanda B, Gifford AN, Fowler JS, Navarre D, Kachroo A, Kachroo P (2013). A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep 3, 1266-1278.
DOI PMID |
[48] | Yu TF, Hou ZH, Wang HL, Chang SY, Song XY, Zheng WJ, Zheng L, Wei JT, Lu ZW, Chen J, Zhou YB, Chen M, Sun SL, Jiang QY, Jin LG, Ma YZ, Xu ZS (2024). Soybean steroids improve crop abiotic stress tolerance and increase yield. Plant Biotechnol J 22, 2333-2347. |
[49] | Zhang M, Zhang J, Zhang XY, Wang GN, Wang XF, Zhang Y (2023). Cloning and functional analysis of GhNAC1 in upland cotton involved in Verticillium wilt resistance. J Agric Sci Technol 25(10), 35-44. (in Chinese) |
张曼, 张进, 张新雨, 王国宁, 王省芬, 张艳 (2023). 陆地棉GhNAC1基因的克隆及抗黄萎病功能分析. 中国农业科技导报 25(10), 35-44. | |
[50] | Zhu YT, Hu XQ, Wang P, Wang HW, Ge XY, Li FG, Hou YX (2022). GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway. Int J Biol Macromol 201, 580-591. |
[51] | Zulfiqar S, Farooq MA, Zhao TT, Wang PP, Tabusam J, Wang YH, Xuan SX, Zhao JJ, Chen XP, Shen SX, Gu AX (2023). Virus-induced gene silencing (VIGS): a powerful tool for crop improvement and its advancement towards epigenetics. Int J Mol Sci 24, 5608. |
[1] | Manya Zhao, Qiannan Sun, Jingjing Xu, Tianni Duan, Jintao Cai, Jing Zhou, Tingting Fan, Langtao Xiao, Ruozhong Wang. Identification, Mapping and Transcriptome Analysis of a New Leaf Color Mutant in Cucumber [J]. Chinese Bulletin of Botany, 2025, 60(4): 515-532. |
[2] | Laipeng Zhao, Baike Wang, Tao Yang, Ning Li, Haitao Yang, Juan Wang, Huizhuan Yan. Investigation of the Regulation of Drought Tolerance by the SlHVA22l Gene in Tomato [J]. Chinese Bulletin of Botany, 2024, 59(4): 558-573. |
[3] | BAI Xue, LI Yu-Jing, JING Xiu-Qing, ZHAO Xiao-Dong, CHANG Sha-Sha, JING Tao-Yu, LIU Jin-Ru, ZHAO Peng-Yu. Response mechanisms of millet and its rhizosphere soil microbial communities to chromium stress [J]. Chin J Plant Ecol, 2023, 47(3): 418-433. |
[4] | . Application and Progress of Plant Virus Vectors [J]. Chinese Bulletin of Botany, 2004, 21(06): 719-723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||