Chinese Bulletin of Botany ›› 2024, Vol. 59 ›› Issue (3): 441-451.DOI: 10.11983/CBB23105 cstr: 32102.14.CBB23105
• TECHNIQUES AND METHODS • Previous Articles Next Articles
Min Kang1,4, Meiying Zhang1,4, Xiushuang Qi6, Ningning Tong4,5, Yang Li4,5, Qingyan Shu4,5, Zheng’an Liu4,5, Changping Lü2,3,*(), Liping Peng4,5,*(
)
Received:
2023-08-03
Accepted:
2023-12-19
Online:
2024-05-10
Published:
2024-05-10
Contact:
E-mail: Min Kang, Meiying Zhang, Xiushuang Qi, Ningning Tong, Yang Li, Qingyan Shu, Zheng’an Liu, Changping Lü, Liping Peng. Establishment of a Fast Breeding System for Itoh Hybrid ‘He Xie’ in Tissue Culture[J]. Chinese Bulletin of Botany, 2024, 59(3): 441-451.
Figure 1 Bud initiation and single bud proliferation of 'He Xie' (A) Flowers; (B) Explants; (C)-(E) The performance of test-tube plantlets after bud initiation at different 6-BA concentrations (0.5, 1.0, and 1.5 mg∙L-1) for 30 days; (F) Growth situation of single shoot after proliferation culture for 30 days. Bars=2 cm
Figure 2 The growth performance for rooting and domesticated transplanting of ‘He Xie’ tube plantlet (A) Single shoots used for root induction (bar=2 cm); (B) Rooted seedlings after 30 d of vernalization (cold treatment for 8 days, root induction for 30 days, and root elongation for 20 days, cold storage at 4°C for 30 days) (bar=2 cm); (C)-(F) The test tube plantlets with different rooting qualities (C: Tertiary; D: Secondary; E, F: Primary) (bars=2 cm); (G)-(I) The transplanted seedlings of different rooting quality for domesticating 60 d (G: Tertiary; H: Secondary; I: Primary) (bars=3 cm)
Treatments | Time (min) | Sodium hypochlorite | Contamination rate (%) | Survival rate (%) |
---|---|---|---|---|
X1 | 8 | 2% | 62.5 | 100 |
X2 | 10 | 2% | 40.0 | 100 |
X3 | 12 | 2% | 9.09 | 100 |
Table 1 Contamination rate and surviveal rate of ‘He Xie’ buds treated with different disinfection times
Treatments | Time (min) | Sodium hypochlorite | Contamination rate (%) | Survival rate (%) |
---|---|---|---|---|
X1 | 8 | 2% | 62.5 | 100 |
X2 | 10 | 2% | 40.0 | 100 |
X3 | 12 | 2% | 9.09 | 100 |
Treatments | GA3 (mg∙L-1) | 6-BA (mg∙L-1) | Induction rate (%) | Browning rate (%) | Multiplication factor (n) | Stem length (cm) | Leaves per plant (n) |
---|---|---|---|---|---|---|---|
1 | 0.2 | 0.5 | 100 | 20 | 2.40±0.26 b | 2.58±0.60 a | 6.47±1.01 a |
2 | 0.2 | 1.0 | 100 | 10 | 2.80±0.10 a | 2.95±0.23 a | 7.80±0.70 a |
3 | 0.2 | 1.5 | 100 | 10 | 2.93±0.12 a | 3.05±0.41 a | 6.93±0.21 a |
Table 2 Effect of different 6-BA concentrations on the primary culture of ‘He Xie’ buds
Treatments | GA3 (mg∙L-1) | 6-BA (mg∙L-1) | Induction rate (%) | Browning rate (%) | Multiplication factor (n) | Stem length (cm) | Leaves per plant (n) |
---|---|---|---|---|---|---|---|
1 | 0.2 | 0.5 | 100 | 20 | 2.40±0.26 b | 2.58±0.60 a | 6.47±1.01 a |
2 | 0.2 | 1.0 | 100 | 10 | 2.80±0.10 a | 2.95±0.23 a | 7.80±0.70 a |
3 | 0.2 | 1.5 | 100 | 10 | 2.93±0.12 a | 3.05±0.41 a | 6.93±0.21 a |
Treatments | 6-BA (mg∙L-1) | IBA (mg∙L-1) | GA3 (mg∙L-1) | Multiplication factor (n) | Browning rate (%) |
---|---|---|---|---|---|
1 | 0.5 | 0.2 | 0.2 | 3.25±0.33 a | 0.04±0.07 a |
2 | 0.5 | 0.2 | 0.5 | 2.67±0.29 ab | 0.08±0.07 a |
3 | 0.5 | 0.2 | 0.8 | 2.13±0.33 b | 0.17±0.07 a |
Table 3 Effect of GA3 concentration on proliferation of ‘He Xie’ test-tube plantlets
Treatments | 6-BA (mg∙L-1) | IBA (mg∙L-1) | GA3 (mg∙L-1) | Multiplication factor (n) | Browning rate (%) |
---|---|---|---|---|---|
1 | 0.5 | 0.2 | 0.2 | 3.25±0.33 a | 0.04±0.07 a |
2 | 0.5 | 0.2 | 0.5 | 2.67±0.29 ab | 0.08±0.07 a |
3 | 0.5 | 0.2 | 0.8 | 2.13±0.33 b | 0.17±0.07 a |
Treatments | IBA (mg∙L-1) | Induction time (d) | Rooting rate (%) | Rooting number (n) | Root length (cm) |
---|---|---|---|---|---|
1 | 0.5 | 30 | 1.59±2.75 h | 0.67±1.15 cd | 1.53±2.66 bc |
2 | 0.5 | 40 | 19.05±2.75 fg | 2.00±1.15 abc | 5.20±2.66 a |
3 | 0.5 | 50 | 14.29±0.00 g | 1.33±0.58 cde | 3.87±0.23 ab |
4 | 1.0 | 30 | 19.05±8.24 fg | 1.33±0.58 cde | 5.33±1.94 a |
5 | 1.0 | 40 | 3.17±5.50 h | 0.67±1.15 cd | 1.53±2.66 bc |
6 | 1.0 | 50 | 0.00±0.00 h | 0.00±0.00 d | 0.00±0.00 c |
7 | 1.5 | 30 | 14.29±0.00 g | 1.67±1.15 abc | 4.17±2.75 ab |
8 | 1.5 | 40 | 33.33±8.25 de | 2.00±0.50 abc | 4.73±0.13 a |
9 | 1.5 | 50 | 28.57±0.00 ef | 2.67±1.15 ab | 5.33±0.50 a |
10 | 2.0 | 30 | 66.67±8.25 a | 3.33±0.58 a | 4.77±0.65 a |
11 | 2.0 | 40 | 42.86±0.00 bcd | 2.78±0.39 ab | 5.33±0.62 a |
12 | 2.0 | 50 | 47.62±8.24 bc | 2.33±0.67 abc | 4.95±1.58 a |
13 | 2.5 | 30 | 38.10±8.25 cde | 1.72±0.25 abc | 4.85±1.73 a |
14 | 2.5 | 40 | 71.43±0.00 a | 2.06±0.42 abc | 5.26±0.52 a |
15 | 2.5 | 50 | 52.38±8.24 b | 2.11±0.84 abc | 5.38±0.98 a |
Table 4 Effect of IBA concentration and induction time on induced rooting
Treatments | IBA (mg∙L-1) | Induction time (d) | Rooting rate (%) | Rooting number (n) | Root length (cm) |
---|---|---|---|---|---|
1 | 0.5 | 30 | 1.59±2.75 h | 0.67±1.15 cd | 1.53±2.66 bc |
2 | 0.5 | 40 | 19.05±2.75 fg | 2.00±1.15 abc | 5.20±2.66 a |
3 | 0.5 | 50 | 14.29±0.00 g | 1.33±0.58 cde | 3.87±0.23 ab |
4 | 1.0 | 30 | 19.05±8.24 fg | 1.33±0.58 cde | 5.33±1.94 a |
5 | 1.0 | 40 | 3.17±5.50 h | 0.67±1.15 cd | 1.53±2.66 bc |
6 | 1.0 | 50 | 0.00±0.00 h | 0.00±0.00 d | 0.00±0.00 c |
7 | 1.5 | 30 | 14.29±0.00 g | 1.67±1.15 abc | 4.17±2.75 ab |
8 | 1.5 | 40 | 33.33±8.25 de | 2.00±0.50 abc | 4.73±0.13 a |
9 | 1.5 | 50 | 28.57±0.00 ef | 2.67±1.15 ab | 5.33±0.50 a |
10 | 2.0 | 30 | 66.67±8.25 a | 3.33±0.58 a | 4.77±0.65 a |
11 | 2.0 | 40 | 42.86±0.00 bcd | 2.78±0.39 ab | 5.33±0.62 a |
12 | 2.0 | 50 | 47.62±8.24 bc | 2.33±0.67 abc | 4.95±1.58 a |
13 | 2.5 | 30 | 38.10±8.25 cde | 1.72±0.25 abc | 4.85±1.73 a |
14 | 2.5 | 40 | 71.43±0.00 a | 2.06±0.42 abc | 5.26±0.52 a |
15 | 2.5 | 50 | 52.38±8.24 b | 2.11±0.84 abc | 5.38±0.98 a |
Rooting quality | Survival rate (%) | |||||
---|---|---|---|---|---|---|
10 d | 20 d | 30 d | 40 d | 50 d | 60 d | |
Level 1 | 96.00 | 92.00 | 72.00 | 72.00 | 64.00 | 52.00 |
Level 2 | 87.80 | 85.37 | 73.17 | 62.85 | 60.98 | 48.78 |
Level 3 | 52.38 | 47.62 | 28.57 | 19.05 | 14.29 | 14.29 |
Table 5 Effect of different rooting number and rooting quality on the survival rate of transplanted seedlings at different time
Rooting quality | Survival rate (%) | |||||
---|---|---|---|---|---|---|
10 d | 20 d | 30 d | 40 d | 50 d | 60 d | |
Level 1 | 96.00 | 92.00 | 72.00 | 72.00 | 64.00 | 52.00 |
Level 2 | 87.80 | 85.37 | 73.17 | 62.85 | 60.98 | 48.78 |
Level 3 | 52.38 | 47.62 | 28.57 | 19.05 | 14.29 | 14.29 |
[1] | An BY (2005). Studies on the Establishment of In Viro Regeneration System of Peony suffruticosa. Master’s thesis. Harbin: Northeast Forestry University. pp. 38-39, 41. (in Chinese) |
安佰义 (2005). 牡丹组培离体再生系统的建立. 硕士论文. 哈尔滨: 东北林业大学. pp. 38-39, 41. | |
[2] | Beruto M, Lanteri L, Portogallo C (2004). Micropropagation of tree peony (Paeonia suffruticosa). Plant Cell Tissue Organ Cult 79, 249-255. |
[3] | Bouza L, Jacques M, Miginiac E (1994a). In vitro propagation of Paeonia suffruticosa Andr. cv. ‘Mme de Vatry’: developmental effects of exogenous hormones during the multiplication phase. Sci Hortic 57, 241-251. |
[4] | Bouza L, Jacques M, Sotta B, Miginiac E (1994b). The reactivation of tree peony (Paeonia suffruticosa Andr.) vitroplants by chilling is correlated with modifications of abscisic acid, auxin and cytokinin levels. Plant Sci 97, 153-160. |
[5] | Bouza L, Sotta B, Bonnet M, Jacques M, Arnaud Y (1992). Hormone content and meristematic activity of Paeonia suffruticosa Andr. cv. ‘Madame de Vatry’ vitroplants during in vitro rooting. Acta Hortic 320, 213-216. |
[6] | Gu ZY, Men SQ, Zhu J, Hao Q, Tong NN, Liu ZA, Zhang HC, Shu QY, Wang LS (2019). Chalcone synthase is ubiquitinated and degraded via interactions with a RING- H2 protein in petals of Paeonia ‘He Xie’. J Exp Bot 70, 4749-4762. |
[7] | Han K, Liang CA, Liu HF, Wang XH (2021). Garden application of Ito peony (hybrid). Spec Econ Anim Plants 24(5), 50-52. (in Chinese) |
韩鲲, 梁长安, 刘红凡, 王晓晖 (2021). 伊藤牡丹(杂种)的园林应用. 特种经济动植物 24(5), 50-52. | |
[8] | Hao Q, Liu ZA, Shu QY, Wang LS, Chen FF (2008). Identification of intersectional hybrid between section moutan and section Paeonia found in China for the first time. Acta Hortic Sin 35, 853-858. (in Chinese) |
郝青, 刘政安, 舒庆艳, 王亮生, 陈富飞 (2008). 中国首例芍药牡丹远缘杂交种的发现及鉴定. 园艺学报 35, 853-858. | |
[9] | Hu K, Zhang LJ, Bai XM, Cui YN, Ruan YY (2007). Analysis of the cause of contamination and explant sterilization in plant tissue culture. J Anhui Agric Sci 35, 680-681. (in Chinese) |
胡凯, 张立军, 白雪梅, 崔玉娜, 阮燕晔 (2007). 植物组织培养污染原因分析及外植体的消毒. 安徽农业科学 35, 680-681. | |
[10] | Jia WQ, You Y, Liu HC (2012). Preliminary study on the adventitious bud induction and rooting of peony. North Hortic (12), 138-140. (in Chinese) |
贾文庆, 尤扬, 刘会超 (2012). 牡丹顶芽不定芽诱导及生根的初步研究. 北方园艺 (12), 138-140. | |
[11] | Jing DD, Liu ZA, Li XX, Xiao XJ (2011). Preliminary study on fertility of a distant hybrid ‘Hexie’ of tree peony. Sci Silvae Sin 47(10), 59-62. (in Chinese) |
荆丹丹, 刘政安, 李新旭, 肖雪霁 (2011). 牡丹远缘杂种‘和谐’育性的初步研究. 林业科学 47(10), 59-62. | |
[12] | Kong XS, Zhang MX (1998). Study on the in vitro micropropagation of tree peony. North Hortic (3-4), 87-89. (in Chinese) |
孔祥生, 张妙霞 (1998). 牡丹离体快繁技术研究. 北方园艺 (3-4), 87-89. | |
[13] | Li LZM (2016). Micropropagation of Paeonia ‘Bartzella’ —A Hybrid Between Herbaceous and Tree Peony. Master’s thesis. Beijing: Beijing Forestry University. pp. 26-39. (in Chinese) |
李刘泽木 (2016). 芍药与牡丹组间杂种‘Bartzella’的离体快繁技术研究. 硕士论文. 北京: 北京林业大学. pp. 26-39. | |
[14] | Li MY, Liu L, Liu Y, Zhang XM (2021). Establishment of tissue culture system for axillary bud regeneration of Primula × pubescens. Chin Bull Bot 56, 732-739. (in Chinese) |
李孟悦, 刘柳, 刘艳, 张晓曼 (2021). 毛报春(Primula × pubescens)腋芽再生组织培养体系的建立. 植物学报 56, 732-739.
DOI |
|
[15] | Li P, Cheng FY (2007). Progress of peony tissue culture technology. North Hortic (11), 102-106. (in Chinese) |
李萍, 成仿云 (2007). 牡丹组织培养技术的研究进展. 北方园艺 (11), 102-106. | |
[16] | Li Y, Kong F, Liu ZA, Peng LP, Shu QY (2022). PhUGT78A22, a novel glycosyltransferase in Paeonia ‘He Xie’, can catalyze the transfer of glucose to glucosylated anthocyanins during petal blotch formation. BMC Plant Biol 22, 405. |
[17] | Li ZJ, Liu ZG, Li HM (2006). Research on peony fast breeding technology. Shandong For Sci Technol 36(3), 39-40. (in Chinese) |
李志军, 刘志国, 李红梅 (2006). 牡丹组培快繁技术研究. 山东林业科技 36(3), 39-40. | |
[18] | Liu DQ (2013). An insight into the rationing of growth factors and cytokinins during plant tissue culture. Middle Sch Biol 29(5), 5-6. (in Chinese) |
刘东奇 (2013). 植物组织培养过程中生长素和细胞分裂素的配比问题浅析. 中学生物学 29(5), 5-6. | |
[19] | Liu JX, Yu XN (2015). Grey correlation analysis between blooming stage and related phenophases and prediction model establishment of blooming stage of herbaceous peony introduced in Beijing. J Plant Resour Environ 24(4), 108-110. (in Chinese) |
刘建鑫, 于晓南 (2015). 北京地区引进观赏芍药花期与相关物候期的灰色关联分析及其花期预测模型建立. 植物资源与环境学报 24(4), 108-110. | |
[20] | Liu SQ, Wang FZ, An LJ (1995). Theory and Practice of Cell Engineering. Shenyang: Liaoning University Publishing House. pp. 48-49. (in Chinese) |
刘世强, 王法政, 安利佳 (1995). 细胞工程的理论与实践. 沈阳: 辽宁大学出版社. pp. 48-49. | |
[21] | Liu ZG, Zhao SZ, Shu QY (2021). A culture medium and method for the propagation of oil peony. China Patent, ZL201910627011.5. 2021-10-15. (in Chinese) |
刘政安, 赵素珍, 舒庆艳 (2021). 一种用于油用牡丹繁殖的培养基及方法. 中国专利, ZL201910627011.5. 2021-10- 15. | |
[22] | Ma XL, Wu JX, Liu SH (2018). Current status and outlook of Ito peony development. China Flowers Hortic (16), 28-31. (in Chinese) |
马翔龙, 吴敬需, 刘少华 (2018). 伊藤牡丹发展现状与展望. 中国花卉园艺 (16), 28-31. | |
[23] | Murashige T (1974). Plant propagation through tissue cultures. Annu Rev Plant Physiol 25, 135-166. |
[24] | Qiu JM (2010). Study on the In Vitro Micropropagation of Tree Peony. Master’s thesis. Beijing: Beijing Forestry University. pp. 3. (in Chinese) |
邱金梅 (2010). 牡丹离体快繁技术的研究. 硕士论文. 北京: 北京林业大学. pp. 3. | |
[25] | Sun JF, Cheng FY (2007). Preliminary report on the introduction of intersectional hybrids between tree and herbaceous peonies. Chin Landsc Archit 23(5), 51-54. (in Chinese) |
孙菊芳, 成仿云 (2007). 芍药与牡丹组间杂种引种栽培初报. 中国园林 23(5), 51-54. | |
[26] | Sun MT, Li JH, Ren J, Qin YJ, Lu J, Meng FZ (2022). Establishment of aseptic system and callus induction of Paeonia Itoh ‘Bartzella’. J Shandong For Sci Technol 52(3), 7-11. (in Chinese) |
孙茂桐, 李际红, 任静, 秦永健, 卢洁, 孟凡志 (2022). 伊藤杂种‘巴茨拉’不同外植体无菌体系建立及愈伤组织诱导. 山东林业科技 52(3), 7-11. | |
[27] | Tang FL, Zhao J, Zhao ZG, Xia K, Qiu S (2019). Tissue culture and rapid propagation of Ardisia gigantifolia. Chin Bull Bot 54, 378-384. (in Chinese) |
唐凤鸾, 赵健, 赵志国, 夏科, 仇硕 (2019). 走马胎的组织培养与快速繁殖. 植物学报 54, 378-384.
DOI |
|
[28] | Tong NN, Zhou XY, Peng LP, Liu ZA, Shu QY (2021). A comprehensive study of three species of Paeonia stem and leaf phytochemicals, and their antioxidant activities. J Ethnopharmacol 273, 113985. |
[29] | Wang JX, Yan XL, Pan RC (2005). Relationship between adventitious root formation and plant hormones. Plant Physiol Commun 41, 133-142. (in Chinese) |
王金祥, 严小龙, 潘瑞炽 (2005). 不定根形成与植物激素的关系. 植物生理学通讯 41, 133-142. | |
[30] | Wang X (2016). In Vitro Rapid Propagation of Paeonia ostii ‘Feng Dan’. Master’s thesis. Beijing: Beijing Forestry University. pp. 5-38. (in Chinese) |
王新 (2016). ‘凤丹’牡丹离体快繁技术研究. 硕士论文. 北京: 北京林业大学. pp. 5-38. | |
[31] | Wang X, Cheng FY, Zhong Y, Wen SS, Li LZM, Huang NZ (2016). Establishment of in vitro rapid propagation system for tree peony (Paeonia ostii). Sci Silvae Sin 52(5), 101-110. (in Chinese) |
王新, 成仿云, 钟原, 文书生, 李刘泽木, 黄弄璋 (2016). 凤丹牡丹鳞芽离体培养与快繁技术. 林业科学 52(5), 101-110. | |
[32] | Wang YQ, Wei LD, Wang WJ, Liu BJ, Zhang CL, Zhang JW, He YH (2020). The establishment and optimization of a regeneration system for marigold (Tagetes erecta). Chin Bull Bot 55, 749-759. (in Chinese) |
王亚琴, 韦陆丹, 王文静, 刘宝骏, 张春玲, 张俊卫, 何燕红 (2020). 万寿菊再生体系的建立及优化. 植物学报 55, 749-759. | |
[33] | Wen SS, Cheng FY, Zhong Y, Wang X, Li LZM, Huang NZ (2016). Protocol for the micropropagation of tree peony (Paeonia × lemoinei ‘High Noon’). Plant Sci J 34, 143-150. (in Chinese) |
文书生, 成仿云, 钟原, 王新, 李刘泽木, 黄弄璋 (2016). ‘正午’牡丹微繁殖体系的建立. 植物科学学报 34, 143-150. | |
[34] | Wu GX, Cui LH, Liu SH, Yao F, Si SX, Ren SH, Wu JX, Wang SQ (2011). Preliminary studying report of cultiva- ting and demonstrating Itoh hybrids introduced from abroad. North Hortic (24), 67-71. (in Chinese) |
吴国新, 崔玲华, 刘少华, 姚方, 司守霞, 任叔辉, 吴敬需, 王拴芹 (2011). 国外伊藤杂种牡丹引进栽培示范研究. 北方园艺 (24), 67-71. | |
[35] | Wu JX, Liu SH, Sui CQ (2022). Intergroup hybridization of peony and peony introduced from abroad. China Flowers Hortic (5), 54-60. (in Chinese) |
吴敬需, 刘少华, 隋承权 (2022). 国外引进的牡丹芍药组间杂种品种. 中国花卉园艺 (5), 54-60. | |
[36] | Yan XF, Qu WF (2020). A tissue culture propagation method of peony. Chinese Patent, ZL202010129492.X. 2021-01- 05. (in Chinese) |
闫晓芳, 屈武斐 (2020). 一种牡丹的组织培养繁殖方法. 中国专利, ZL202010129492.X. 2021-01-05. | |
[37] | Yang LH, Zhang JJ, Wang Q, Zhu W, Zhang T, Yu XN (2017). Ploidy identification and karyotype analysis of five Itoh hybrid peonies. Bull Bot Res 37, 535-541. (in Chinese) |
杨柳慧, 张建军, 王琪, 朱炜, 张滕, 于晓南 (2017). 5个芍药属伊藤杂种的倍性鉴定及核型分析. 植物研究 37, 535-541.
DOI |
|
[38] | Yin LQ, Wang XQ, Hu YH, Liu Z, Li XF, Zhang JJ (2012). Several factors influencing tissue culture of Paeonia suffruticosa. Agric Acta Shanghai 28, 17-21. (in Chinese) |
殷丽青, 王新其, 胡永红, 刘炤, 李秀芬, 张建军 (2012). 牡丹组织培养若干影响因子研究. 上海农业学报 28, 17-21. | |
[39] | Zhang Q, Wang HF (2012). In vitro shoot rooting and plantlet transplanting of tree peonies. Acta Hortic Sin 39, 1819-1828. (in Chinese) |
张倩, 王华芳 (2012). 牡丹试管苗生根与移栽技术研究进展. 园艺学报 39, 1819-1828. | |
[40] | Zhang WB (2022). Effects of disinfectant type and disinfection time on peony explants. Agric Technol Serv 39(7), 46-48. (in Chinese) |
张伟彬 (2022). 消毒剂种类及消毒时间对牡丹外植体的影响. 农技服务 39(7), 46-48. | |
[41] | Zhuang Q, Zhu SY, Du XQ, Zhao LQ (2011). Introduction of interspecific hybrids of Paeonia to northeast China. J North For Univ 39(4), 21-23. (in Chinese) |
庄倩, 朱松岩, 杜晓琪, 赵立群 (2011). 芍药属组间杂种引进东北地区栽培试验. 东北林业大学学报 39(4), 21-23. |
[1] | Xuping Tian, Kangjie Yue, Jiali Wang, Huixin Liu, Ziyin Shi, Hongwei Kang. Callus Induction and Plant Regeneration of Dracocephalum rupestre [J]. Chinese Bulletin of Botany, 2024, 59(4): 613-625. |
[2] | Xiaomei Liu,Lili Sun,Xiangdong Fu,Hong Liao. An Effective Method for the Rooting of Tea Cuttings [J]. Chinese Bulletin of Botany, 2019, 54(4): 531-538. |
[3] | Dapeng Wang, Jiaze Tang, Mingcheng Shao, Wenbiao Zhang, Huafang Wang. Rooting Induced on in vitro Leaves and Fresh Cuttings of Populus euphratica [J]. Chinese Bulletin of Botany, 2017, 52(2): 210-217. |
[4] | Qun Zhang, Xiuli Lü, Xiaoli He, Yi Zhu, Xinhong Cui. A Rapid Propagation System for Scirpus × mariqueter [J]. Chinese Bulletin of Botany, 2016, 51(5): 684-690. |
[5] | Feng Hu, Qiong Shi, Liejian Huang. Acacia melanoxylon Callus Induction and Shoot Regeneration System [J]. Chinese Bulletin of Botany, 2014, 49(5): 603-610. |
[6] | Decheng Xu, Xiaojing Wang. Axillary Bud Propagation and Regeneration from Stem Segment Explants in Calophyllum inophyllum [J]. Chinese Bulletin of Botany, 2014, 49(2): 167-172. |
[7] | MENG Peng, LI Yu-Ling, YOU Guo-Chun, ZHANG Shuo. Effects of microenvironmental factors on rooting of Juniperus scopulorum cuttings [J]. Chin J Plant Ecol, 2011, 35(7): 779-788. |
[8] | PEI Dong GU Rui-Sheng. A Review on the Rejuvenation of Mature Trees [J]. Chinese Bulletin of Botany, 2005, 22(06): 753-760. |
[9] | MA Yan XIAO Ya-Ping WANG Cai-Ling WANG Zhe-Zhi. The Study of Root Induction in Celastrus angulatus in vitro [J]. Chinese Bulletin of Botany, 2004, 21(03): 332-336. |
[10] | MO Zhu-Cheng, FAN Hang-Qing, HE Bin-Yuan. Effects of Seawater Salinity on Hypocotyl Growth in Two Mangrove Species [J]. Chin J Plan Ecolo, 2001, 25(2): 235-239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||