Chinese Bulletin of Botany ›› 2018, Vol. 53 ›› Issue (6): 745-755.DOI: 10.11983/CBB17220
• INVITED REVIEWS • Previous Articles Next Articles
Shi Ce1, Luo Pan1, Zou Jie2, Sun Mengxiang1,*()
Received:
2017-11-19
Online:
2018-11-01
Published:
2018-12-05
Contact:
Sun Mengxiang
Shi Ce, Luo Pan, Zou Jie, Sun Mengxiang. The Role of DELLA Proteins in Sexual Reproduction of Angiosperms[J]. Chinese Bulletin of Botany, 2018, 53(6): 745-755.
Figure 1 Functional domains, phylogenetic tree and conversed motif location of DELLAs reported in plant(A) Diagram of the structural domain and relative functions of DELLA protein. (B) DELLAs are classified into 3 categories: one clade is monocot, the other two are dicots. The tree is calculated with Mega 5.1 software using the Neighbor-joining method. Motifs in DELLA protein sequences were identified with the MEME tool (http://meme.nbcr.net). (C) 10 discovered motifs of DELLA protein via MEME tool. DELLAs include all the conserved motifs: DELLA, LHRs, VHIID, PFYRE and SAW.
Figure 2 The role of DELLA protein in sexual reproduction of angiosperm DELLAs play a key role in plant sexual reproduction including pollen viability and quantity, pollen wall formation, the growth of pollen tube, stigma morphogenesis, style elongation and integument development.
[1] |
黄先忠, 蒋才富, 廖立力, 傅向东 (2006). 赤霉素作用机理的分子基础与调控模式研究进展. 植物学通报 23, 499-510.
DOI URL |
[2] |
姚涛, 白素兰, 李苗苗, 张耀川, 何奕昆 (2011). DELLA蛋白参与拟南芥幼苗对一氧化氮逆境的抵抗. 植物学报 46, 481-488.
DOI URL |
[3] |
Aarts M, Hodge R, Kalantidis K, Florack D, Wilson Z, Mulligan B, Stiekema W, Scott R, Pereira A (1997). The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes.Plant J 12, 615-623.
DOI URL PMID |
[4] |
Achard P, Genschik P (2009). Releasing the brakes of plant growth: how GAs shutdown DELLA proteins.J Exp Bot 60, 1085-1092.
DOI URL PMID |
[5] |
Allan RE (1986). Agronomic comparisons among wheat lines nearly isogenic for three reduced-height genes.Crop Sci 26, 707-710.
DOI URL |
[6] |
Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009). Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB.Plant Cell 21, 1453-1472.
DOI URL |
[7] |
Bolle C (2004). The role of GRAS proteins in plant signal transduction and development.Planta 218, 683-692.
DOI URL PMID |
[8] |
Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002). Mutants at the Slender1 locus of barley cv. ‘Himalaya’. molecular and physiological characterization. Plant Physiol 129, 181-190.
DOI URL |
[9] |
Cheng H, Qin LJ, Lee S, Fu XD, Richards DE, Cao DN, Luo D, Harberd NP, Peng JR (2004). Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function.Development 131, 1055-1064.
DOI URL |
[10] |
Chhun T, Aya K, Asano K, Yamamoto E, Morinaka Y, Watanabe M, Kitano H, Ashikari M, Matsuoka M, Ueguchi-Tanaka M (2007). Gibberellin regulates poll- en viability and pollen tube growth in rice.Plant Cell 19, 3876-3888.
DOI URL |
[11] |
Conti L, Nelis S, Zhang CJ, Woodcock A, Swarup R, Galbiati M, Tonelli C, Napier R, Hedden P, Bennett M, Sadanandom A (2014). Small ubiquitin-like modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin.Dev Cell 28, 102-110.
DOI URL |
[12] |
Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, Ehrhardt DW, Frommer WB, Sprunck S, Dresselhaus T, Grossmann G (2014). Male-female communication triggers calcium signatures during fertilization in Arabidopsis.Nat Commun 5, 4645.
DOI URL PMID |
[13] |
Dill A, Jung HS, Sun TP (2001). The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA 98, 14162-14167.
DOI URL |
[14] |
Dorcey E, Urbez C, Blázquez MA, Carbonell J, Perez- Amador MA (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis.Plant J 58, 318-332.
DOI URL PMID |
[15] |
Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C (2016). Auxin production in the endosperm drives seed coat development in Arabidopsis.e-Life 5, e20542.
DOI URL PMID |
[16] |
Fleck B, Harberd NP (2002). Evidence that the Arabidopsis nuclear gibberellin signaling protein GAI is not destabilised by gibberellin.Plant J 32, 935-947.
DOI URL PMID |
[17] |
Fleet C, Sun TP (2005). A DELLAcate balance: the role of gibberellin in plant morphogenesis.Curr Opin Plant Biol 8, 77-85.
DOI URL PMID |
[18] | Foster CA (1977). Slender: an accelerated extension growth mutant of barley.Barley Genet Newsl 7, 24-27. |
[19] |
Fu X, Richards DE, Ait-Ali T, Hynes LW, Ougham H, Peng J, Harberd NP (2002). Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor.Plant Cell 14, 3191-3200.
DOI URL |
[20] |
Fuentes S, Ljung K, Sorefan K, Alvey E, Harberd NP, østergaard L (2012). Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses.Plant Cell 24, 3982-3996.
DOI URL |
[21] |
Fukazawa J, Mori M, Watanabe S, Miyamoto C, Ito T, Takahashi Y (2017). DELLA-GAF1 complex is a main component in gibberellin feedback regulation of GA20 oxi- dase 2.Plant Physiol 175, 1395-1406.
DOI URL |
[22] |
Glover J, Grelon M, Craig S, Chaudhury A, Dennis E (1998). Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J 15, 345-356.
DOI URL PMID |
[23] |
Gomez MD, Ventimilla D, Sacristan R, Perez-Amador MA (2016). Gibberellins regulate ovule integument development by interfering with the transcription factor ATS.Plant Physiol 172, 2403-2415.
DOI URL PMID |
[24] |
Hadden P, Phillips AL (2000). Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 12, 523-530.
DOI URL PMID |
[25] |
Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T (2014). Live imaging of calcium spikes during double fertilization in Arabidopsis.Nat Commun 5, 4722.
DOI URL PMID |
[26] |
Harberd NP, Belfield E, Yasumura Y (2009). The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments.Plant Cell 21, 1328-1339.
DOI URL PMID |
[27] |
Hedden P, Thomas SG (2012). Gibberellin biosynthesis and its regulation.Biochem J 444, 11-25.
DOI URL |
[28] |
Hepler PK, Vidali L, Cheung AY (2001). Polarized cell growth in higher plants.Annu Rev Cell Dev Biol 17, 159-187.
DOI URL |
[29] |
Hirsch S, Kim J, Munoz A, Heckmann AB, Downie JA, Oldroyd GE (2009). GRAS proteins form a DNA binding complex to induce gene expression during nodulation sig- naling in Medicago truncatula. Plant Cell 21, 545-557.
DOI URL PMID |
[30] |
Hou XL, Hu WW, Shen LS, Lee LY, Tao Z, Han JH, Yu H (2008). Global identification of DELLA target genes during Arabidopsis flower development.Plant Physiol 147, 1126-1142.
DOI URL |
[31] |
Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001). slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13, 999-1010.
DOI URL PMID |
[32] | Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002). The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RI- CE1 in nuclei. Plant Cell 14, 57-70. |
[33] |
Johnston AJ, Meier P, Gheyselinck J, Wuest SEJ, Federer M, Schlagenhauf E, Becker JD, Grossniklaus U (2007). Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte.Genome Biol 8, R204.
DOI URL |
[34] |
Jones-Rhoades MW, Borevitz JO, Preuss D (2007). Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins.PLoS Genet 3, e171.
DOI URL PMID |
[35] |
Kimata Y, Higaki T, Kawashima T, Kurihara D, Sato Y, Yamada T, Hasezawa S, Berger F, Higashiyama T, Ueda M (2016). Cytoskeleton dynamics control the first asymmetric cell division in Arabidopsis zygote.Proc Natl Acad Sci USA 113, 14157-14162.
DOI URL PMID |
[36] | Koornneef M, Elgersma A, Hanhart CJ, van Loenen- Martinet EP, van Rijn L, Zeevaart JAD (1985). A gibberel- lin insensitive mutant of Arabidopsis thaliana. Physiol Plant 65, 33-39. |
[37] |
Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J (2002). Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 16, 646-658.
DOI URL PMID |
[38] |
Levy DE, Darnell JE Jr (2002). Stats: transcriptional control and biological impact.Nat Rev Mol Cell Biol 3, 651-662.
DOI URL PMID |
[39] | Li S, Zhao Y, Zhao Z, Wu X, Sun L, Liu Q, Wu Y (2016). Crystal structure of the GRAS domain of SCARECRO- W-LIKE7 in Oryza sativa. Plant Cell 28, 1025-1034. |
[40] |
Liu B, De Storme N, Geelen D (2017). Gibberellin induces diploid pollen formation by interfering with meiotic cytokinesis.Plant Physiol 173, 338-353.
DOI URL PMID |
[41] |
Locascio A, Blázquez MA, Alabadl D (2013). Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction.Curr Biol 23, 804-809.
DOI URL PMID |
[42] | Martl C, Orzáez D, Ellul P, Moreno V, Carbonell J, Granell A (2007). Silencing of DELLA induces facultative parthe- nocarpy in tomato fruits. Plant J 52, 865-876. |
[43] |
Murase K, Hirano Y, Sun TP, Hakoshima T (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1.Nature 456, 459-463.
DOI URL PMID |
[44] |
Okada K, Ito T, Fukazawa J, Takahashi Y (2017). Gibberellin induces an increase in cytosolic Ca2+ via a DELLA- independent signaling pathway.Plant Physiol 175, 1536-1542.
DOI URL |
[45] |
Peng JR, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11, 3194-3205.
DOI URL PMID |
[46] |
Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999). ‘Green revolution’ genes encode mutant gibberellin response modulators.Nature 400, 256-261.
DOI URL |
[47] |
Plackett ARG, Ferguson AC, Powers SJ, Wanchoo-Kohli A, Phillips AL, Wilson ZA, Hedden P, Thomas SG (2014). DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis.New Phytol 201, 825-836.
DOI URL PMID |
[48] | Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999). The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18, 111-119. |
[49] |
Richards DE, Peng J, Harberd NP (2000). Plant GRAS and metazoan STATs: one family?BioEssays 22, 573-577.
DOI URL PMID |
[50] |
Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM (2017). In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat Plants 3, 803-813.
DOI URL PMID |
[51] |
Schmidt A, Wuest SE, Vijverberg K, Baroux C, Kleen D, Grossniklaus U (2011). Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development.PLoS Biol 9, e1001155.
DOI URL PMID |
[52] |
Silverstone AL, Ciampaglio CN, Sun TP (1998). The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 155-169.
DOI URL PMID |
[53] | Silverstone AL, Mak PYA, Martlnez EC, Sun TP (1997). The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146, 1087-1099. |
[54] |
Singh DP, Jermakow AM, Swain SM (2002). Gibberellins are required for seed development and pollen tube growth in Arabidopsis.Plant Cell 14, 3133-3147.
DOI URL |
[55] |
Smyth DR, Bowman JL, Meyerowitz EM (1990). Early flower development in Arabidopsis.Plant Cell 2, 755-767.
DOI URL |
[56] |
Steffan JG, Kang IH, Macfarlane J, Drews GN (2007). Identification of genes expressed in the Arabidopsis female gametophyte.Plant J 51, 281-292.
DOI URL PMID |
[57] |
Sun TP (2010). Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development.Plant Physiol 154, 567-570.
DOI URL |
[58] |
Sun TP (2011). The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants.Curr Biol 21, R338-R345.
DOI URL PMID |
[59] | Swain SM, Muller AJ, Singh DP (2004). The gar2 and rga alleles increase the growth of gibberellin-deficient pollen tubes in Arabidopsis. Plant Physiol 134, 694-705. |
[60] |
Thomas SG, Blázquez MA, Alabadl D (2016). DELLA proteins: master regulators of gibberellin-responsive growth and development.Annual Plant Reviews 49, 189-228.
DOI URL |
[61] |
Ueguchi-Tanaka M, Matsuoka M (2010). The perception of gibberellins: clues from receptor structure.Curr Opin Plant Biol 13, 1-16.
DOI URL PMID |
[62] |
Van De Velde K, Ruelens P, Geuten K, Rohde A, Van Der Straeten D (2017). Exploiting DELLA signaling in cereals.Trends Plant Sci 22, 880-893.
DOI URL PMID |
[63] |
Wen CK, Chang CR (2002). Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14, 87-100.
DOI URL PMID |
[64] |
Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenführer J, von Mering C, Grossniklaus U (2010). Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes.Curr Biol 20, 506-512.
DOI URL PMID |
[65] |
Yu H, Hogan P, Sundaresan V (2005). Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling.Plant Physiol 139, 1853-1869.
DOI URL PMID |
[66] |
Yu H, Ito T, Zhao YX, Peng JR, Kumar P, Meyerowitz EM (2004). Floral homeotic genes are targets of gibberellin signaling in flower development.Proc Natl Acad Sci USA 101, 7827-7832.
DOI URL |
[1] | Ming-Yi Bai, Jinrong Peng, Xiangdong Fu. Coordinated Regulation of Gibberellin and Brassinosteroid Signalings Drives Toward a Sustainable “Green Revolution” by Breeding the New Generation of High-yield Wheat [J]. Chinese Bulletin of Botany, 2023, 58(2): 194-198. |
[2] | Yegeng Fan,Lihang Qiu,Xing Huang,Huiwen Zhou,Chongkun Gan,Yangrui Li,Rongzhong Yang,Jianming Wu,Rongfa Chen. Expression Analysis of Key Genes in Gibberellin Biosynthesis and Related Phytohormonal Dynamics During Sugarcane Internode Elongation [J]. Chinese Bulletin of Botany, 2019, 54(4): 486-496. |
[3] | Haiwei Shuai, Yongjie Meng, Feng Chen, Wenguan Zhou, Xiaofeng Luo, Wenyu Yang, Kai Shu. Phytohormone-mediated Plant Shade Responses [J]. Chinese Bulletin of Botany, 2018, 53(1): 139-148. |
[4] | Chunmei Zhong, Xiaojing Wang. Progress in Cysteine-rich Gibberellic Acid-stimulated Arabidopsis Protein [J]. Chinese Bulletin of Botany, 2016, 51(1): 1-8. |
[5] | Tao Yao, Sulan Bai, Miaomiao Li, Yaochuan Zhang, Yikun He. DELLA Contribute to Tolerance to Nitric Oxide Stress in Arabidopsis Seedlings [J]. Chinese Bulletin of Botany, 2011, 46(5): 481-488. |
[6] | Xianzhong Huang;Caifu Jiang;Lili Liao;Xiangdong Fu. Progress on Molecular Foundation of GA Biosynthesis Pathway and Signaling [J]. Chinese Bulletin of Botany, 2006, 23(5): 499-510. |
[7] | Yuangang Zu;Jing Jia;Wenjie Wang;Fengjian Yang;Huafeng Chen;Naijing Zhang. Changes in Several Physiological-biochemical Parameters During the Life Cycle of Iva xanthifolia [J]. Chinese Bulletin of Botany, 2006, 23(4): 348-355. |
[8] | HUANG Zhi-Gang LI Ling CHEN Zhao-Ping WEN Fang-De. SPINDLY and Gibberellin Signaling [J]. Chinese Bulletin of Botany, 2005, 22(01): 100-106. |
[9] | WANG Wei ZHU Ping CHENG Ke-Di. Molecular Biology of the Plant Gibberellin Biosynthesis and Signaling [J]. Chinese Bulletin of Botany, 2002, 19(02): 137-149. |
[10] | LI Xing-Jun LI San-Yu LIN Jin-Xing. On Hypotheses of Controlling Flower_bud Initiation in Fruit Trees by Phytohormone Signals [J]. Chinese Bulletin of Botany, 2001, 18(06): 678-683. |
[11] | ZHONG Xi-Qiong WANG Hui-Zhen. Progress on GA Biosynthesis and Regulationin Higher Plants [J]. Chinese Bulletin of Botany, 2001, 18(03): 303-307. |
[12] | SONG Ping ZHOU Xie. The Mechanism of Internodal Elongation of Deepwater Rice [J]. Chinese Bulletin of Botany, 2000, 17(01): 46-51. |
[13] | MA Huan-Pu and LIU Zhi-Min. Gibberellins and Fruit Tree Development [J]. Chinese Bulletin of Botany, 1998, 15(01): 27-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||