植物学报 ›› 2020, Vol. 55 ›› Issue (5): 541-550.DOI: 10.11983/CBB20058
李思佳1, 张咏雪1, 贾明生2, 李莹1, 戴绍军2,*()
收稿日期:
2020-04-05
接受日期:
2020-05-20
出版日期:
2020-09-01
发布日期:
2020-09-03
通讯作者:
戴绍军
作者简介:
E-mail: daishaojun@hotmail.com基金资助:
Sijia Li1, Yongxue Zhang1, Mingsheng Jia2, Ying Li1, Shaojun Dai2,*()
Received:
2020-04-05
Accepted:
2020-05-20
Online:
2020-09-01
Published:
2020-09-03
Contact:
Shaojun Dai
摘要: 类LORELEI糖基磷脂酰肌醇锚定蛋白(LLG)定位于细胞质膜外表面, 作为CrRLK1L家族类受体激酶的分子伴侣, 参与其转运和胞外信号转导, 从而调控植物生殖发育以及免疫与逆境应答等过程。LLG2/3与ANX和BUPS互作, 调控花粉管顶端生长与爆裂。LLG1与FER (FERONIA)互作, 调控下游的NADPH氧化酶产生活性氧(ROS), 促进根部细胞伸长和根毛生长。此外, LLG1作为FER的共受体, 与快速碱化因子(RALFs)互作, 调节G蛋白β亚基(AGB1)和质膜H +-ATPase功能、胞内ROS稳态以及Ca 2+瞬变, 引起根部和气孔的盐应答反应。LLG1与FLS2和EFR互作激活下游RbohD, 调节ROS产生, 调控植物免疫应答。该文综述了植物LLG的相关研究进展, 可为深入理解LLG的生物学功能提供重要信息。
李思佳, 张咏雪, 贾明生, 李莹, 戴绍军. 植物类LORELEI糖基磷脂酰肌醇锚定蛋白研究进展. 植物学报, 2020, 55(5): 541-550.
Sijia Li, Yongxue Zhang, Mingsheng Jia, Ying Li, Shaojun Dai. Advances of LORELEI-like Glycosylphosphatidylinositol-anchor (LLG) Proteins in Plants. Chinese Bulletin of Botany, 2020, 55(5): 541-550.
图1 拟南芥LLG氨基酸序列与3D结构模型 (A) LLG氨基酸序列(彩色框标注的分别是N端信号肽、序列保守框架、C端构象可变区及C端GPI锚定区; 三角形、绿色圆点、菱形和五角星表示可形成4对二硫键的8个Cys位点, 蓝色圆点表示保守氨基酸位点); (B) LLG1的46-138位氨基酸的3D结构(α螺旋、β折叠、N末端(46)、C末端(138)及8个保守Cys位点形成4对二硫键)
Figure 1 Arabidopsis LLG amino acid sequences and 3D structure model (A) LLG amino acid sequence (The colored boxes indicate the N-terminal signal peptide, sequence conservative frame, C-terminal conformational flexible region, and C-terminal GPI anchor region, respectively; the triangles, green dots, diamonds and pentagonal stars represent 8 Cys sites that can form 4 pairs of disulfide bonds, and the blue dots represent conservative amino acid sites); (B) The 3D structure of amino acids 46-138 of LLG1 (α-helix, β-sheet, N terminal (46), C terminal (138), and conserved 8 Cys sites formed 4 pairs of disulfide bonds)
图2 LLG与RLK家族蛋白不同成员互作调控花粉与根发育以及盐胁迫与免疫应答过程 (A) LLG2/3与ANX1/2和BUPS1/2互作调控花粉管生长与爆裂; (B) LLG1与FER互作调控根与根毛生长; (C) LLG1与FER互作调控盐胁迫应答; (D) LLG1与FLS2和EFR互作调控免疫应答。ABA: 脱落酸; ABI2: A型 PP2Cs磷酸酶; AGB1: 异源三聚体G蛋白β亚基; AHA2: 质膜H+-ATPase 2; ANX1/2: ANXUR1/2; BAK1: 油菜素受体激酶; BIK1: Botrytis诱导激酶1; BUPS1/2: 佛祖之金字亚贴1/2; ECD: 胞外结构域; EDR1: 负调控抗病蛋白1; EFR: 延伸因子Tu受体; elf18: 细菌延伸因子Tu N端18个氨基酸小肽; exJM: 胞外近膜结构域; FER: FERONIA; flg22: 细菌鞭毛蛋白N端22个氨基酸小肽保守基序; FLS2: 鞭毛蛋白传感蛋白2; GDP: 鸟苷二磷酸; GEF1/4/10: 鸟嘌呤核苷酸交换因子1/4/10; GTP: 鸟苷三磷酸; KD: 激酶结构域; LLG1/2/3: 类LORELEI糖基磷脂酰肌醇锚定蛋白1/2/3; LRR: 富含亮氨酸重复序列; LRX: 富含亮氨酸重复序列的延展蛋白; MAPK: 丝裂原活化蛋白激酶; MKK: 丝裂原激活的蛋白激酶激酶; MLD: 类Malectin结构域; NSCC: 非选择性阳离子通道; PR1: 病程相关因子1; RALF: 快速碱化因子; Rboh: 呼吸爆发氧化酶; ROP1/11: 植物Rho相关小G蛋白1/11; S1P: 位点-1蛋白酶; SLAC1: 慢阴离子通道蛋白1; SnRK2: 丝氨酸/苏氨酸蛋白激酶SnRK2D; TM: 跨膜结构域。实线表示直接调控过程, 虚线表示间接调控过程或物质转运。箭头表示促进, T表示抑制。
Figure 2 Interaction between different members of the LLG and RLK family proteins regulates pollen and root development and salt and immune response processes (A) LLG2/3 interacts with ANX1/2 and BUPS1/2 to regulate pollen tube growth and burst; (B) LLG1 interacts with FER to regulate root and root hair growth; (C) LLG1 interacts with FER to regulate salt stress response; (D) LLG1 interacts with FLS2 and EFR to regulate the immune response. ABA: Abscisic acid; ABI2: ABA insensitive 2; AGB1: Heterotrimeric G-protein β-subunit; AHA2: Plasma membrane H+-ATPase 2; ANX1/2: ANXUR1/2; BAK1: Brassinosteroid insensitive 1-associated receptor kinase 1; BIK1: Botrytis-induced kinase 1; BUPS1/2: Buddha’s paper seal1/2; ECD: Extracellular domain; EDR1: Enhanced disease resistance 1; EFR: EF-Tu receptor; elf18: 18 amino acid peptide of EF-Tu N-terminus; eXJM: Extracellular membrane domain; FER: FERONIA; flg22: 22 amino acid peptide of bacterial flagellin N-terminus; FLS2: Flagellin sensing 2; GDP: Guanosine diphosphate; GEF1/4/10: Guanine nucleotide exchange factor1/4/10; GTP: Guanosine triphosphate; KD: Kinase domain; LLG1/2/3: LORELEI-like GPI-anchored protein1/2/3; LRR: Leucine-rich repeat; LRX: Leucine-rich repeat extensin-like protein; MAPK: Mitogen-activated protein kinase; MKK: Mitogen-activated protein kinase kinase; MLD: Malectin-like domain; NSCC: Non-selective cation channels; PR1: Pathogenesis-related factor 1; RALF: Rapid alkalinization factor; Rboh: Respiratory burst oxidase homolog; ROP1/11: Rho-related GTPase1/11 from plants; S1P: Site-1 protease; SLAC1: Slow anion channel 1; SnRK2: Serine/threonine-protein kinase SnRK2D; TM: Transmembrane domain. The solid line represents the direct regulation process, the dotted line represents the indirect regulation process or material transport. The arrow represents promotion, and the T represents inhibition.
[1] |
Chen J, Yu F, Liu Y, Du CQ, Li XS, Zhu SR, Wang XC, Lan WZ, Rodriguez PL, Liu XM, Li DP, Chen LB, Luan S ( 2016). FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsismodification. Proc Natl Acad Sci USA 113, E5519-E5527.
DOI URL PMID |
[2] |
Cheung AY, Li C, Zou YJ, Wu HM ( 2014). Glycosylphosphatidylinositol anchoring: control through modification. Plant Physiol 166, 748-750.
DOI URL PMID |
[3] |
Deslauriers SD, Larsen PB ( 2010). FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls. Mol Plant 3, 626-640.
URL PMID |
[4] |
Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN ( 2008). Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320, 942-945.
DOI URL PMID |
[5] |
Duan QH, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY ( 2014). Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5, 3129.
DOI URL PMID |
[6] |
Duan QH, Kita D, Li C, Cheung AY, Wu HM ( 2010). FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107, 17821-17826.
DOI URL PMID |
[7] |
Duan QH, Liu MCJ, Kita D, Jordan SS, Yeh FLJ, Yvon R, Carpenter H, Federico AN, Garcia-Valencia LE, Eyles SJ, Wang CS, Wu HM, Cheung AY ( 2020). FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579, 561-566.
URL PMID |
[8] |
Feng HQ, Liu C, Fu R, Zhang MM, Li H, Shen LP, Wei QQ, Sun X, Xu L, Ni B, Li C ( 2019). LORELEI-LIKE GPI- ANCHORED PROTEINS 2/3 regulate pollen tube growth as chaperones and coreceptors for ANXUR/BUPS receptor kinases in Arabidopsis. Mol Plant 12, 1612-1623.
DOI URL PMID |
[9] |
Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan QH, Liu MC, Maman J, Steinhorst L, Schmitz- Thom I, Yvon R, Kudla J, Wu HM, Cheung AY, Dinneny JR ( 2018). The FERONIA receptor kinase maintains cell- wall integrity during salt stress through Ca 2+ signaling . Curr Biol 28, 666-675.
DOI URL PMID |
[10] |
Franck CM, Westermann J, Boisson-Dernier A ( 2018). Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu Rev Plant Biol 69, 301-328.
DOI URL PMID |
[11] |
Frye CA, Tang DZ, Innes RW ( 2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98, 373-378.
DOI URL PMID |
[12] |
Ge ZX, Bergonci T, Zhao YL, Zou YJ, Du S, Liu MC, Luo XJ, Ruan H, García-Valencia LE, Zhong S, Hou SY, Huang QP, Lai LH, Moura DS, Gu HY, Dong J, Wu HM, Dresselhaus T, Xiao JY, Cheung AY, Qu LJ ( 2017). Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358, 1596-1600.
DOI URL PMID |
[13] |
Ge ZX, Cheung AY, Qu LJ ( 2019). Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface. New Phytol 222, 687-693.
DOI URL PMID |
[14] |
Guo HQ, Li L, Ye HX, Yu XF, Algreen A, Yin YH ( 2009). Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA 106, 7648-7653.
DOI URL PMID |
[15] |
Haruta M, Monshausen G, Gilroy S, Sussman MR ( 2008). A cytoplasmic Ca 2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide. Biochemistry 47, 6311-6321.
DOI URL PMID |
[16] |
Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR ( 2014). A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408-411.
DOI URL PMID |
[17] |
Hou YN, Guo XY, Cyprys P, Zhang Y, Bleckmann A, Cai L, Huang QP, Luo Y, Gu HY, Dresselhaus T, Dong J, Qu LJ ( 2016). Maternal ENODLs are required for pollen tube reception in Arabidopsis. Curr Biol 26, 2343-2350.
DOI URL PMID |
[18] |
Huang GQ, Li E, Ge FR, Li S, Wang Q, Zhang CQ, Zhang Y ( 2013). Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. New Phytol 200, 1089-1101.
DOI URL PMID |
[19] |
Johnson MA, Harpe JF, Palanivelu R ( 2019). A fruitful journey: pollen tube navigation from germination to fertilization. Annu Rev Plant Biol 70, 809-837.
URL PMID |
[20] |
José-Estanyol M, Gomis-Rüth FX, Puigdomènech P ( 2004). The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem 42, 355-365.
DOI URL PMID |
[21] |
Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K ( 2014). Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26, 1069-1080.
DOI URL PMID |
[22] |
Keinath NF, Kierszniowska S, Lorek J, Bourdais G, Kessler SA, Shimosato-Asano H, Grossniklaus U, Schulze WX, Robatzek S, Panstruga R ( 2010). PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J Biol Chem 285, 39140-39149.
DOI URL PMID |
[23] |
Li C, Yeh FL, Cheung AY, Duan QH, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L, Jalal M, Kwong A, Carpenter H, Wu HM ( 2015). Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4, e06587.
DOI URL |
[24] |
Li HJ, Yang WC ( 2016). RLKs orchestrate the signaling in plant male-female interaction. Sci China Life Sci 59, 867-877.
DOI URL PMID |
[25] |
Li HJ, Yang WC ( 2018). Ligands switch model for pollen- tube integrity and burst. Trends Plant Sci 23, 369-372.
URL PMID |
[26] |
Li L, Li M, Yu LP, Zhou ZY, Liang XX, Liu ZX, Cai GH, Gao LY, Zhang XJ, Wang YC, Chen S, Zhou JM ( 2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329-338.
DOI URL PMID |
[27] |
Liu LF, Shangguan KK, Zhang BC, Liu XL, Yan MX, Zhang LJ, Shi YY, Zhang M, Qian Q, Li JY, Zhou YH ( 2013). Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet 9, e1003704.
DOI URL PMID |
[28] |
Liu XL, Castro C, Wang YB, Noble J, Ponvert N, Bundy M, Hoel C, Shpak E, Palanivelu R ( 2016). The role of LORELEI in pollen tube reception at the interface of the synergid cell and pollen tube requires the modified eight- cysteine motif and the receptor-like kinase FERONIA. Plant Cell 28, 1035-1052.
URL PMID |
[29] |
Mangano S, Juárez SPD, Estevez JM ( 2016). ROS regulation of polar growth in plant cells. Plant Physiol 171, 1593-1605.
DOI URL PMID |
[30] |
Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Gagliardini V, Martínez-Ber- nardini A, Fabrice TN, Ringli C, Muschietti JP, Gros- sniklaus U ( 2017). RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358, 1600-1603.
DOI URL PMID |
[31] |
Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S ( 2007). Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci USA 104, 20996-21001.
DOI URL PMID |
[32] |
Shen QJ, Bourdais G, Pan HR, Robatzek S, Tang DZ ( 2017). Arabidopsis glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity. Proc Natl Acad Sci USA 114, 5749-5754.
URL PMID |
[33] |
Shi H, Shen QJ, Qi YP, Yan HJ, Nie HZ, Chen YF, Zhao T, Katagiri F, Tang DZ ( 2013). BR-SIGNALING KINASE 1 physically associates with FLAGELLIN SENSING 2 and regulates plant innate immunity in Arabidopsis. Plant Cell 25, 1143-1157.
DOI URL PMID |
[34] |
Sun YD, Li L, Macho AP, Han ZF, Hu ZH, Zipfel C, Zhou JM, Chai JJ ( 2013). Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342, 624-628.
DOI URL PMID |
[35] |
Swanson S, Gilroy S ( 2010). ROS in plant development. Physiol Plant 138, 384-392.
DOI URL PMID |
[36] |
Xiao Y, Stegmann M, Han ZF, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai JJ ( 2019). Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572, 270-274.
DOI URL PMID |
[37] |
Xu GY, Chen WJ, Song LM, Chen QS, Zhang H, Liao HD, Zhao GQ, Lin FC, Zhou HN, Yu F ( 2019). FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the stability of 14-3-3 proteins in response to the carbon/nitrogen ratio. J Exp Bot 70, 6375-6388.
DOI URL PMID |
[38] |
Yang T, Wang L, Li CY, Liu Y, Zhu SR, Qi YY, Liu XM, Lin QL, Luan S, Yu F ( 2015). Receptor protein kinase FERO-NIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 465, 77-82.
DOI URL PMID |
[39] |
Yang YQ, Qin YX, Xie CG, Zhao FY, Zhao JF, Liu DF, Chen SY, Fuglsang AT, Palmgren MG, Schumaker KS, Deng XW, Guo Y ( 2010). The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. Plant Cell 22, 1313-1332.
DOI URL PMID |
[40] |
Yeats TH, Sorek H, Wemmer DE, Somerville CR ( 2016). Cellulose deficiency is enhanced on hyper accumulation of sucrose by a H+-coupled sucrose symporter. Plant Physiol 171, 110-124.
DOI URL PMID |
[41] |
Yin YL, Qin KZ, Song XW, Zhang QH, Zhou YH, Xia XJ, Yu JQ ( 2018). BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase- mediated reactive oxygen species signaling in tomato. Plant Cell Physiol 59, 2239-2254.
DOI URL PMID |
[42] |
Yu F, Qian LC, Nibau C, Duan QH, Kita D, Levasseur K, Li XQ, Lu CQ, Li H, Hou CC, Li LG, Buchanan BB, Chen LB, Cheung AY, Li DP, Luan S ( 2012). FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci USA 109, 14693-14698.
DOI URL PMID |
[43] |
Yu JJ, Li Y, Qin Z, Guo SY, Li YF, Miao YC, Song CP, Chen SX, Dai SJ ( 2020). Plant chloroplast stress response: insights from thiol redox proteomics. Antioxid Redox Signal 33, 35-57.
DOI URL PMID |
[44] |
Yu SC, Guo ZW, Johnson C, Gu GF, Wu QY ( 2013). Recent progress in synthetic and biological studies of GPI anchors and GPI-anchored proteins. Curr Opin Chem Biol 17, 1006-1013.
DOI URL PMID |
[45] |
Yu YQ, Assmann SM ( 2015). The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response. Plant Cell Environ 38, 2143-2156.
DOI URL PMID |
[46] |
Yu YQ, Chakravorty D, Assmann SM ( 2018). The G protein β-subunit, AGB1, interacts with FERONIA in RALF1- regulated stomatal movement. Plant Physiol 176, 2426-2440.
DOI URL PMID |
[47] | Zhang WT, Liu J, Zhang YX, Qiu J, Li Y, Zheng BJ, Hu FH, Dai SJ, Huang XH ( 2020). A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance. Sci China Life Sci 63, 1269-1282. |
[48] |
Zhao CZ, Zayed O, Yu ZP, Jiang W, Zhu PP, Hsu CC, Zhang LR, Tao WA, Lozano-Durán R, Zhu JK ( 2018). Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci USA 115, 13123-13128.
DOI URL PMID |
[49] |
Zhong S, Qu LJ ( 2019). Peptide/receptor-like kinase-mediated signaling involved in male-female interactions. Curr Opin Plant Biol 51, 7-14.
DOI URL PMID |
[50] |
Zurzolo C, Simons K ( 2016). Glycosylphosphatidylinositol-anchored proteins: membrane organization and transport. Biochim Biophys Acta 1858, 632-639.
DOI URL PMID |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 0-0. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[5] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[6] | 田旭平, 岳康杰, 王佳丽, 刘慧欣, 史子尹, 亢红伟. 毛建草愈伤组织诱导及植株再生[J]. 植物学报, 2024, 59(4): 0-0. |
[7] | 李宇琛, 赵海霞, 姜希萍, 黄馨田, 刘亚玲, 吴振映, 赵彦, 付春祥. 根癌农杆菌介导的蒙古冰草稳定遗传转化体系的建立[J]. 植物学报, 2024, 59(4): 0-0. |
[8] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[9] | 康敏, 张美莹, 齐秀双, 佟宁宁, 李旸, 舒庆艳, 刘政安, 吕长平, 彭丽平. 伊藤杂种‘和谐’组培快繁体系的建立[J]. 植物学报, 2024, 59(3): 441-451. |
[10] | 刘笑, 杜琬莹, 张云秀, 唐成名, 李华伟, 夏海勇, 樊守金, 孔令安. NO3-缓解小麦根部NH4+毒性机理[J]. 植物学报, 2024, 59(3): 397-413. |
[11] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[12] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[13] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[14] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[15] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||