植物学报 ›› 2020, Vol. 55 ›› Issue (5): 613-622.DOI: 10.11983/CBB19236
亓斐1, 邢丕一2, 鲍印广1,2, 王洪刚1,2, 李兴锋1,2,*()
收稿日期:
2019-12-11
接受日期:
2020-03-23
出版日期:
2020-09-01
发布日期:
2020-09-03
通讯作者:
李兴锋
作者简介:
E-mail: lixf@sdau.edu.cn基金资助:
Fei Qi1, Piyi Xing2, Yinguang Bao1,2, Honggang Wang1,2, Xingfeng Li1,2,*()
Received:
2019-12-11
Accepted:
2020-03-23
Online:
2020-09-01
Published:
2020-09-03
Contact:
Xingfeng Li
摘要:
芒是许多禾本科作物穗部的重要结构, 不仅可以作为区分不同品种以及基因定位的重要形态标记, 而且在禾谷类作物的种子传播、籽粒灌浆、蒸腾作用及产量形成等方面起重要作用。该文综述了小麦(Triticum aestivum)、大麦(Hordeum vulgare)和水稻(Oryza sativa)芒的结构、功能与遗传调控机制研究进展, 以期为芒性状遗传机理的进一步研究及其在育种中的应用提供参考。
亓斐, 邢丕一, 鲍印广, 王洪刚, 李兴锋. 禾本科作物芒遗传研究进展. 植物学报, 2020, 55(5): 613-622.
Fei Qi, Piyi Xing, Yinguang Bao, Honggang Wang, Xingfeng Li. Advances in Genetic Studies of the Awn in Cereal Crops. Chinese Bulletin of Botany, 2020, 55(5): 613-622.
图1 芒的横切面结构 (A) 大麦芒横切面; (B) 普通小麦芒横切面。S: 气孔; V: 维管束; Pa: 薄壁组织; Sc: 厚壁组织
Figure 1 Cross-section of the awn (A) Cross-section of the awn of Hordeum vulgare; (B) Cross-section of the awn of Triticum aestivum. S: Stoma; V: Vascular bundle; Pa: Parenchyma; Sc: Sclerenchyma
图2 不同发育时期芒中叶绿体的结构 (A) 抽穗期; (B) 开花期; (C) 灌浆期; (D) 干物质形成期; (E) 成熟期。Th: 类囊体; G: 叶绿体基粒; Pg: 质体小球; S: 淀粉粒
Figure 2 Chloroplast structure of the awn at different developmental stages (A) Heading stage; (B) Anthesis stage; (C) Filling stage; (D) Dry matter formation stage; (E) Ripening stage. Th: Thylakoid; G: Granum; Pg: Plastoglobuli; S: Starch
基因 | 染色体 | 功能 | 参考文献 |
---|---|---|---|
B1 | 5AL | 分生组织的 维持 | |
B2 | 6BL | 抑制芒伸长 | |
Hd (Wknox1a) | 4AL | 抑制芒伸长 | |
Wknox1b Wknox1d | 4BS 4DS | 茎尖分生组织的形成和维持 |
表1 小麦中已定位的控制芒功能的基因
Table 1 The genes involved in the function of the awn in Triticum aestivum identified by genetic mapping
基因 | 染色体 | 功能 | 参考文献 |
---|---|---|---|
B1 | 5AL | 分生组织的 维持 | |
B2 | 6BL | 抑制芒伸长 | |
Hd (Wknox1a) | 4AL | 抑制芒伸长 | |
Wknox1b Wknox1d | 4BS 4DS | 茎尖分生组织的形成和维持 |
基因 | 染色体 | 功能 | 参考文献 |
---|---|---|---|
AN1 | 4 | 促进细胞分裂和芒原基形成、谷粒伸长及穗粒数减少 | |
AN2 | 4 | 促进细胞分裂素的合成 | |
LABA1 | 4 | 增强芒原基细胞分裂活性及促进芒伸长和芒刺形成 | |
GAD1 | 8 | 促进芒原基细胞分裂和芒形成 | |
GLA | 8 | 促进谷粒伸长 | |
TOB1 | 4 | 促进外稃和内稃形成和生长、分生组织的维持及花器官数量减少 | |
DL | 3 | 分生组织细胞的激活、促进芒形成和伸长及调节花器官的发育 | |
SHO2 | - | 参与TAS3途径中ta-siRNA的合成 | |
SHL2 | 1 | 参与TAS3途径中ta-siRNA的合成 | |
SHO1 | 4 | 参与TAS3途径中ta-siRNA的合成 | |
WAF1 | 7 | 参与TAS3途径中ta-siRNA的合成 | |
OsETT2 | 1 | 外稃生长活化 |
表2 水稻中已定位的控制芒功能的基因
Table 2 The genes involved in the function of the awn in Oryza sativa identified by genetic mapping
基因 | 染色体 | 功能 | 参考文献 |
---|---|---|---|
AN1 | 4 | 促进细胞分裂和芒原基形成、谷粒伸长及穗粒数减少 | |
AN2 | 4 | 促进细胞分裂素的合成 | |
LABA1 | 4 | 增强芒原基细胞分裂活性及促进芒伸长和芒刺形成 | |
GAD1 | 8 | 促进芒原基细胞分裂和芒形成 | |
GLA | 8 | 促进谷粒伸长 | |
TOB1 | 4 | 促进外稃和内稃形成和生长、分生组织的维持及花器官数量减少 | |
DL | 3 | 分生组织细胞的激活、促进芒形成和伸长及调节花器官的发育 | |
SHO2 | - | 参与TAS3途径中ta-siRNA的合成 | |
SHL2 | 1 | 参与TAS3途径中ta-siRNA的合成 | |
SHO1 | 4 | 参与TAS3途径中ta-siRNA的合成 | |
WAF1 | 7 | 参与TAS3途径中ta-siRNA的合成 | |
OsETT2 | 1 | 外稃生长活化 |
基因 | 染色体 | 功能 | 参考文献 |
---|---|---|---|
HvKNOX3 | 4H | 分生组织的维持 | |
Lks2 | 7H | 抑制芒伸长和控制雌蕊形态 | |
SuKD SuKB SuKC SuKE SuKF | 5H 7H 7H 7H 7H | 抑制HvKNOX3的表达 | |
ROUGH AWN1 | 5H | 控制芒倒钩 |
表3 大麦中已定位的控制芒功能的基因
Table 3 The genes involved in the function of the awn in Hordeum vulgare identified by genetic mapping
基因 | 染色体 | 功能 | 参考文献 |
---|---|---|---|
HvKNOX3 | 4H | 分生组织的维持 | |
Lks2 | 7H | 抑制芒伸长和控制雌蕊形态 | |
SuKD SuKB SuKC SuKE SuKF | 5H 7H 7H 7H 7H | 抑制HvKNOX3的表达 | |
ROUGH AWN1 | 5H | 控制芒倒钩 |
[1] | 巴青松, 傅兆麟, 白凡杰 ( 2010). 小麦芒的研究. 淮北师范大学学报 31, 29-33. |
[2] | 陈培元, 李英 ( 1981). 小麦芒的功能及去芒对籽粒重的影响. 作物学报 7, 279-282. |
[3] | 杜斌, 崔法, 王洪刚, 李兴锋 ( 2010). 小麦芒长抑制基因B1近等基因系的鉴定及遗传分析. 分子植物育种 8, 259-264. |
[4] | 金迪, 王冬至, 王焕雪, 李润枝, 陈树林, 阳文龙, 张爱民, 刘冬成, 詹克慧 ( 2019). 小麦芒长抑制基因B2的精细定位与候选基因分析. 作物学报 45, 807-817. |
[5] | 李寒冰, 胡玉熹, 白克智, 匡廷云, 周馥, 林金星 ( 2002). 小麦芒和旗叶叶绿体结构及低温荧光发射光谱的比较研究. 电子显微学报 21, 97-101. |
[6] | 李晓娟 ( 2006). 高产小麦旗叶和芒细胞结构及其光合性能的研究. 硕士论文. 北京: 中国科学院植物研究所. pp. 37-42. |
[7] | 王忠, 顾蕴洁, 高煜珠 ( 1993). 麦芒的结构及其光合特性. 植物学报 35, 921-928. |
[8] | 张永平, 王志敏, 吴永成, 张霞 ( 2006). 不同供水条件下小麦不同绿色器官的气孔特性研究. 作物学报 32, 70-75. |
[9] | Abe M, Yoshikawa T, Nosaka M, Sakakibara H, Sato Y, Nagato Y, Itoh J ( 2010). WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining microRNA and trans-acting small interfering RNA accumulation in rice. Plant Physiol 154, 1335-1346. |
[10] |
Abebe T, Melmaiee K, Berg V, Wise RP ( 2010). Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Funct Integr Genomic 10, 191-205.
DOI URL |
[11] |
Abebe T, Wise RP, Skadsen RW ( 2009). Comparative transcriptional profiling established the awn as the major photosynthetic organ of the barley spike while the lemma and the palea primarily protect the seed. Plant Genome 2, 247-259.
DOI URL |
[12] | Antonyuk MZ, Prokopyk DO, Martynenko VS, Ternovska TK ( 2012). Identification of the genes promoting awnedness in the Triticum aestivum/Aegilops umbellulata introgressive line. Cytol Genet 46, 136-143. |
[13] |
Biscoe PV, Littleton EJ, Scott RK ( 1973). Stomatal control of gas exchange in barley awns. Ann Appl Biol 75, 285-297.
DOI URL |
[14] | Brown HT, Escombe F ( 1901). Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Proc Royal Soc Lond 67, 124-128. |
[15] | Cuthbert JL, Somers DJ, Brûlé-Babel A, Brown PD, Crow GH ( 2008). Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117, 595-608. |
[16] | DeWitt N, Guedira M, Lauer E, Sarinelli M, Tyagi P, Fu DL, Hao QQ, Murphy JP, Marshall D, Akhunova A, Jordan K, Akhunov E, Brown-Guedira G ( 2020). Sequence-based mapping identifies a candidate transcription repressor underlying awn suppression at the B1 locus in wheat. New Phytol 225, 326-339. |
[17] |
Elbaum R, Zaltzman L, Burgert I, Fratzl P ( 2007). The role of wheat awns in the seed dispersal unit. Science 316, 884-886.
DOI URL PMID |
[18] |
Evans LT, Bingham J, Jackson P, Sutherland J ( 1972). Effect of awns and drought on the supply of photosynthate and its distribution within wheat ears. Ann Appl Biol 70, 67-76.
DOI URL |
[19] | Evans LT, Rawson HM ( 1970). Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat. Austr J Biol Sci 23, 245-254. |
[20] |
Grundbacher FJ ( 1963). The physiological function of the cereal awn. Bot Rev 29, 366-381.
DOI URL |
[21] |
Gu BG, Zhou TY, Luo JH, Liu H, Wang YC, Shangguan YY, Zhu JJ, Li Y, Sang T, Wang ZX, Han B ( 2015). An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol Plant 8, 1635-1650.
URL PMID |
[22] |
Guo ZF, Schnurbusch T ( 2016). Costs and benefits of awns. J Exp Bot 67, 2533-2535.
DOI URL PMID |
[23] |
Hua L, Wang DR, Tan LB, Fu YC, Liu FX, Xiao LT, Zhu ZF, Fu Q, Sun XY, Gu P, Cai HW, McCouch SR, Sun CQ ( 2015). LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell 27, 1875-1888.
DOI URL PMID |
[24] | Huang DQ, Zheng Q, Melchkart T, Bekkaoui Y, Konkin DJF, Kagale S, Martucci M, You FM, Clarke M, Adamski NM, Chinoy C, Steed A, McCartney CA, Cutler AJ, Nicholson P, Feurtado JA ( 2020). Dominant inhibition of awn development by a putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat. New Phytol 225, 340-355. |
[25] |
Hudson ME, Quail PH ( 2003). Identification of promoter motifs involved in the network of phytochrome a-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol 133, 1605-1616.
DOI URL PMID |
[26] |
Itoh JI, Kitano H, Matsuoka M, Nagato Y ( 2000). SHOOT ORGANIZATION genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. Plant Cell 12, 2161-2174.
DOI URL PMID |
[27] | Itoh JI, Sato Y, Nagato Y ( 2008). The SHOOT ORGANIZATION 2 gene coordinates leaf domain development along the central-marginal axis in rice. Plant Cell Physiol 49, 1226-1236. |
[28] |
Jin J, Hua L, Zhu ZF, Tan LB, Zhao XH, Zhang WF, Liu FX, Fu YC, Cai HW, Sun XY, Gu P, Xie DX, Sun CQ ( 2016). GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell 28, 2453-2463.
DOI URL PMID |
[29] | Lipavská H, Mašková P, Vojvodová P ( 2011). Regulatory dephosphorylation of CDK at G2/M in plants: yeast mitotic phosphatase cdc25 induces cytokinin-like effects in transgenic tobacco morphogenesis. Ann Bot 107, 1071-1086. |
[30] |
Luo JH, Liu H, Zhou TY, Gu BG, Huang XH, Shangguan YY, Zhu JJ, Li Y, Zhao Y, Wang YC, Zhao Q, Wang AH, Wang ZQ, Sang T, Wang ZX, Han B ( 2013). An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25, 3360-3376.
DOI URL PMID |
[31] |
Mackay IJ, Bansept-Basler P, Barber T, Bentley AR, Cockram J, Gosman N, Greenland AJ, Horsnell R, Howells R, O’Sullivan DM, Rose GA, Howell PJ ( 2014). An eight-parent multiparent advanced generation inter- cross population for winter-sown wheat: creation, properties, and validation. G3 4, 1603-1610.
DOI URL PMID |
[32] | Maydup ML, Antonietta M, Graciano C, Guiamet JJ, Tambussi EA ( 2014). The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: responses to water deficit and the effects of awns on ear temperature and hydraulic conductance. Field Crops Res 167, 102-111. |
[33] |
Milner SG, Jost M, Taketa S, Mazón ER, Himmelbach A, Oppermann M, Weise S, Knüpffer H, Basterrechea M, König P, Schüler D, Sharma R, Pasam RK, Rutten T, Guo GG, Xu DD, Zhang J, Herren G, Müller T, Krattinger SG, Keller B, Jiang Y, González MY, Zhao YS, Habekuß A, Färber S, Ordon F, Lange M, Börner A, Graner A, Reif JC, Scholz U, Mascher M, Stein N ( 2019). Genebank genomics highlights the diversity of a global barley collection. Nat Genet 51, 319-326.
DOI URL PMID |
[34] | Morimoto R, Kosugi T, Nakamura C, Takumi S ( 2005). Intragenic diversity and functional conservation of the three homoeologous loci of the KN1-type homeobox gene Wknox1 in common wheat. Plant Mol Biol 57, 907-924. |
[35] |
Motzo R, Giunta F ( 2002). Awnedness affects grain yield and kernel weight in near-isogenic lines of durum wheat. Aust J Agric Res 53, 1285-1293.
DOI URL |
[36] |
Müller KJ, Pozzi C, Müller J, Salamini F, Rohde W ( 2000). Molecular analysis of homeotic genes involved in barley development. Pflügers Arch Eur J Physiol 439, R14-R15.
DOI URL |
[37] | Müller KJ, Romano N, Gerstner O, Garcia-Maroto F, Pozzi C, Salamini F, Rohde W ( 1995). The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374, 727-730. |
[38] |
Olugbemi LB ( 1978). Distribution of carbon-14 assimilated by wheat awns. Ann Appl Biol 90, 111-114.
DOI URL |
[39] | Olugbemi LB, Bingham J, Austin RB ( 1976). Ear and flag leaf photosynthesis of awned and awnless Triticum species. Ann Appl Biol 84, 231-240. |
[40] | Qureshi N, Bariana HS, Zhang P, McIntosh R, Bansal UK, Wong D, Hayden MJ, Dubcovsky J, Shankar M ( 2018). Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Dis 102, 413-420. |
[41] |
Rebetzke GJ, Bonnett DG, Reynolds MP ( 2016). Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J Exp Bot 67, 2573-2586.
DOI URL PMID |
[42] | Roig C, Pozzi C, Santi L, Müller J, Wang YM, Stile MR, Rossini L, Stanca M, Salamini F ( 2004). Genetics of barley hooded suppression. Genetics 167, 439-448. |
[43] | Santi L, Wang YL, Stile MR, Berendzen KW, Wanke D, Roig C, Pozzi C, Müller K, Müller J, Rohde W, Salamini F ( 2003). The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene BKn3. Plant J 34, 813-826. |
[44] | Satoh N, Itoh J, Nagato Y ( 2003). The SHOOTLESS2 and SHOOTLESS1 genes are involved in both initiation and maintenance of the shoot apical meristem through regulating the number of indeterminate cells. Genetics 164, 335-346. |
[45] | Sorensen AE ( 1986). Seed dispersal by adhesion. Ann Rev Ecol Evol Syst 17, 443-463. |
[46] | Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Qi LL, Gill BS, Dufour P, Murigneux A, Bernard M ( 2004). Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomic 4, 12-25. |
[47] |
Takumi S, Kosugi T, Murai K, Mori N, Nakamura C ( 2000). Molecular cloning of three homoeologous cDNAs encoding orthologs of the maize KNOTTED1 homeobox protein from young spikes of hexaploid wheat. Gene 249, 171-181.
DOI URL PMID |
[48] | Tanaka W, Toriba T, Ohmori Y, Yoshida A, Kawai A, Mayama-Tsuchida T, Ichikawa H, Mitsuda N, Ohme- Takagi M, Hirano HY ( 2012). The YABBY gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet. Plant Cell 24, 80-95. |
[49] |
Teare ID, Sij JW, Waldren RP, Goltz SM ( 1972). Comparative data on the rate of photosynthesis, respiration, and transpiration of different organs in awned and awnless isogenic lines of wheat. Can J Plant Sci 52, 965-971.
DOI URL |
[50] | Toriba T, Hirano HY ( 2014). The DROOPING LEAF and OsETTIN2 genes promote awn development in rice. Plant J 77, 616-626. |
[51] | Wang DZ, Yu K, Jin D, Sun LH, Chu JF, Wu WY, Xin PY, Gregová E, Li X, Sun JZ, Yang WL, Zhan KH, Zhang AM, Liu DC ( 2020). Natural variations in the promoter of Awn Length Inhibitor 1(ALI-1) are associated with awn elongation and grain length in common wheat. Plant J 101, 1075-1090. |
[52] | Watkins AE, Ellerton S ( 1940). Variation and genetics of the awn in Triticum. J Genet 40, 243-270. |
[53] |
Welchen E, Gonzalez DH ( 2006). Overrepresentation of elements recognized by TCP-domain transcription factors in the upstream regions of nuclear genes encoding components of the mitochondrial oxidative phosphorylation machinery. Plant Physiol 141, 540-545.
DOI URL PMID |
[54] | Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY ( 2004). The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16, 500-509. |
[55] |
Yoshioka M, Iehisa JCM, Ohno R, Kimura T, Enoki H, Nishimura S, Nasuda S, Takumi S ( 2017). Three dominant awnless genes in common wheat: fine mapping, interaction and contribution to diversity in awn shape and length. PLoS One 12, e0176148.
DOI URL PMID |
[56] | Yuo T, Yamashita Y, Kanamori H, Matsumoto T, Lundqvist U, Sato K, Ichii M, Jobling SA, Taketa S ( 2012). A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J Exp Bot 63, 5223-5232. |
[57] | Zhang YP, Zhang ZY, Sun XM, Zhu XY, Li B, Li JJ, Guo HF, Chen C, Pan YH, Liang YT, Xu ZJ, Zhang HL, Li ZC ( 2019). Natural alleles of GLA for grain length and awn development were differently domesticated in rice subspecies japonica and indica. Plant Biotechnol J 17, 1547-1559. |
[1] | 王文伟 韩伟鹏 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位梯度的短期响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 席念勋 张原野 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[3] | 王晓悦 许艺馨 李春环 余海龙 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性及其影响因素研究[J]. 植物生态学报, 2023, 47(1): 0-0. |
[4] | 许再富. 对国家植物园体系建设“统筹原则”的一些见解[J]. 生物多样性, 2023, 31(1): 0-0. |
[5] | 杨元合 张典业 魏斌 刘洋 冯雪徽 毛超 徐玮婕 贺美 王璐 郑志虎 王媛媛 陈蕾伊 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 0-0. |
[6] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[7] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[8] | 张世航, 陶冶, 陈玉森, 郭浩, 陆永兴, 郭星, 刘朝红, 周晓兵, 张元明. 准噶尔荒漠土壤多功能性的空间变异特征及其驱动因素[J]. 生物多样性, 2022, 30(8): 22097-. |
[9] | 王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970. |
[10] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[11] | 张旋, 杜薇, 徐颖, 王永龙. 包头市半干旱型森林公园土壤细菌多样性与功能[J]. 生物多样性, 2022, 30(7): 22245-. |
[12] | 黄宏文, 廖景平. 论我国国家植物园体系建设: 以任务带学科构建国家植物园迁地保护综合体系[J]. 生物多样性, 2022, 30(6): 22220-. |
[13] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[14] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[15] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||