植物学报 ›› 2018, Vol. 53 ›› Issue (3): 353-363.DOI: 10.11983/CBB17051

所属专题: 药用植物专辑 (2018年53卷3期)

• 技术方法 • 上一篇    下一篇

托里阿魏叶片蒸腾调节规律动力学测定方法探索

张萍1, 郝秀英2, 于瑞凤1, 周红梅1, 朱建军1,*   

  1. 1鲁东大学生命科学学院, 烟台 264025
    2新疆农业科学院应用微生物研究所, 乌鲁木齐 830001
  • 收稿日期:2017-03-14 接受日期:2017-06-20 出版日期:2018-05-01 发布日期:2018-09-11
  • 通讯作者: 朱建军
  • 基金资助:
    国家自然科学基金(No.31371540, No.31260080)和山东省自然科学基金(No.ZR2012CM007)

A Tentative Method for Monitoring the Dynamic Features of Transpiration Regulation in Ferula krylovii Leaves

Zhang Ping1, Hao Xiuying2, Yu Ruifeng1, Zhou Hongmei1, Zhu Jianjun1   

  1. 1College of Life Sciences, Ludong University, Yantai 264025, China
    2Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830001, China
  • Received:2017-03-14 Accepted:2017-06-20 Online:2018-05-01 Published:2018-09-11

摘要: 以新疆荒漠自然条件下生长的托里阿魏(Ferula krylovii)为材料, 用高灵敏度湿度等传感器配合特制叶室, 记录和模拟分析了整个大型复叶的蒸腾耗水和蒸腾调节的动力学特性, 并与光合仪和称重法测定的结果进行对比。结果显示, 用传感器配合特制叶室, 监测到植物在短时间(1-2分钟)内的快速蒸腾动态调节及其日变化特征和参数, 根据这些参数可以分析同等条件下温度、光照和湿度等因子对蒸腾作用影响的相关性, 从而更精确地分析自然和高湿度条件下叶片的蒸腾耗水动力学特性, 提供其它方法无法观测的气孔对湿度变化的快速调节细节。同时, 由于该方法能够测定大尺度样品, 减少了其它方法由于仅能测定叶片局部而造成的因选点位置不同导致的取样误差、因气体样品量小造成的系统误差以及小叶室夹可能造成的机械压力胁迫。该方法与其它传感器结合, 能够更全面地获取植物在不同环境条件下的蒸腾耗水调节机制的相关参数, 理论上也可以远程遥控和连续监测, 为分析植物对环境的适应能力及其机制提供更为详细的动态图景。

关键词: 传感器, 温湿度测定, 托里阿魏, 气孔调节, 蒸腾动力学

Abstract: The transpirational dynamics and regulation features in leaves of Ferula krylovii grown in a desert area of Xinjiang, China were monitored, recorded and analysed systematically with a high-sensitivity humidity sensor combined with a specific leaf chamber and other types of sensors. The results were compared with those from other methods such as photosynthetic meters or weighing. Parameters associated with fast regulation (within 1-2 min) and diurnal variations in transpiration rate were clearly monitored and recorded. The parameters obtained could be used to analyse the correlations between transpiration and the effect of changes in environmental factors such as temperature, light intensity, and humidity to uncover more details on the transpirational dynamics and regulation features of a plant, details that other methods are unable to provide. Because larger samples could be measured with this method, the disadvantages of other methods could be excluded, such as errors due to the selection of the local sampling site, systematic errors due to smaller gas samples, and possible mechanical stress due to the clamp of the leaf chamber. This method, combined with other types of sensors, could yield parameters that cover more extensively the transpirational water consumption and regulation of plants under varied environmental conditions and provide a more detailed dynamic perspective of plants in their adaptation to environments, with the possibility of remote, continuous monitoring.

Key words: sensors, temperature and humidity monitoring, Ferula krylovii, stomata regulation, transpiration dynamics