植物学报 ›› 2020, Vol. 55 ›› Issue (5): 623-633.DOI: 10.11983/CBB20034
张卫勤1, 邹杭2,3, 张妮娜1, 林雪媛1, 陈娟1,2,*()
收稿日期:
2020-03-03
接受日期:
2020-06-05
出版日期:
2020-09-01
发布日期:
2020-09-03
通讯作者:
陈娟
作者简介:
E-mail: chenjuan@nwsuaf.edu.cn基金资助:
Weiqin Zhang1, Hang Zou2,3, Nina Zhang1, Xueyuan Lin1, Juan Chen1,2,*()
Received:
2020-03-03
Accepted:
2020-06-05
Online:
2020-09-01
Published:
2020-09-03
Contact:
Juan Chen
摘要: 豆科植物-根瘤菌共生过程受双方基因复杂且精细的调控, 能够产生特异的根瘤结构并可将大气中的惰性氮气(N2)转化为可被植物直接利用的氨态氮。结瘤与固氮受多种因素影响, 其中, 一氧化氮(NO)作为一种自由基反应性气体信号分子, 可参与调节植物的许多生长发育过程, 如植物的呼吸、光形态建成、种子萌发、组织和器官发育、衰老以及响应各种生物及非生物胁迫。在豆科植物中, NO不仅影响寄主与菌共生关系的建立, 还参与调控根瘤菌对氮气的固定并提高植株氮素营养利用效率。该文主要从豆科植物及共生菌内NO的产生、降解及其对结瘤、共生固氮的影响和对环境胁迫的响应, 阐述了NO调控豆科植物共生体系中根瘤形成和共生固氮过程的作用机制, 展望了NO信号分子在豆科植物共生固氮体系中的研究前景。
张卫勤, 邹杭, 张妮娜, 林雪媛, 陈娟. 一氧化氮对豆科植物结瘤及固氮的影响机制. 植物学报, 2020, 55(5): 623-633.
Weiqin Zhang, Hang Zou, Nina Zhang, Xueyuan Lin, Juan Chen. Influence Mechanisms of Nitric Oxide on Nodulation and Nitrogen Fixation in Legumes. Chinese Bulletin of Botany, 2020, 55(5): 623-633.
图1 共生体系中NO的产生与降解示意图(改自Hichri et al., 2016a) 图中包含上下2部分, 分别对应植物和共生体NO的产生与降解。其中, 七角星图示代表氧化途径, 椭圆形图示代表还原途径。实线表示已有研究证实, 虚线表示还有待考证。ETC: 线粒体电子传递链; GSNOR: 亚硝基谷胱甘肽还原酶; Hmp: 黄素血红蛋白; Lb: 豆血红蛋白; NnrS: 含血红素和铜的膜蛋白; Nor: NO还原酶; NOS: NO合酶; ns-Hb: 非共生血红蛋白; NR: 硝酸还原酶; PAOX: 多胺氧化酶; sd-Hb: 单域血红蛋白; Tr-Hb: 截短血红蛋白; TrxR: 硫氧还蛋白还原酶; XOR: 黄嘌呤氧化还原酶
Figure 1 The schematic diagram of NO production and degradation in the symbiotic system (modified from Hichri et al., 2016a) The figure contains the upper and lower parts, which correspond to the production and degradation of NO from plants and symbiotes, respectively. The seven horns star diagrams refer to the oxidation pathway and the oval diagrams refer to the reduction pathway. The lines indicate that studies have been confirmed, and the dashed lines indicate that it is yet to be studied. ETC: Mitochondrial electron transport chain; GSNOR: S-nitrosoglutathione reductase; Hmp: Flavin hemoglobin; Lb: Leghemoglobin; NnrS: Haem- and copper-con- taining membrane protein; Nor: NO reductase; NOS: NO synthase; ns-Hb: Nonsymbiotic hemoglobin; NR: Nitrate reductase; PAOX: Polyamine oxidase; sd-Hb: Single domain hemoglobin; Tr-Hb: Truncated hemoglobin; TrxR: Thioredoxin reduction enzymes; XOR: Xanthine oxidoreductase
图2 NO在共生固氮中的作用示意图(改自Boscari et al., 2013; Hichri et al., 2015, 2016b) 一方面, NO抑制固氮和C、N代谢; 另一方面, NO调控细胞氧化还原和保持低氧水平下的能量状态。带+的细线表示NO的活化、诱导和保持效果; 带有-的细线表示NO的抑制作用。椭圆形粗线箭头表示NO主要的代谢途径。爆炸型图示指来自植物和菌共生体的酶, 闪电型图示表示根瘤菌内的基因。ACO: 乌头酸; CS: 柠檬酸合酶; Gln: 谷氨酰胺; Glu: 谷氨酸; GS: 谷氨酰胺合成酶; GSH: 谷胱甘肽; GSHS: 谷胱甘肽合成酶; GSNO: S-亚硝基谷胱甘肽; Hb: 血红蛋白; IDH: 异柠檬酸脱氢酶; MDH: 苹果酸脱氢酶; NH4+: 铵根离子; Nif: 固氮酶; SDH: 琥珀酸脱氢酶; γ-EC: γ-谷氨酰半胱氨酸; γ-ECS: γ-谷氨酰半胱氨酸合成酶
Figure 2 Schematic diagram of the role of NO in symbiotic nitrogen fixation (modified from Boscari et al., 2013; Hichri et al., 2015, 2016b) On the one hand, NO inhibits nitrogen fixation and carbon and nitrogen metabolism; on the other hand, it regulates cellular redox status and maintains the energy state under low oxygen levels. A thin line with + indicate the activation, induction, and retention effects of NO; a thin line with - indicate the inhibition of NO. The oval thick line arrows indicate the main metabolic pathways of NO. Explosive type diagrams refer to enzymes from plants and bacterial symbionts, and lightning type diagram represents genes within rhizobium. ACO: Aconitic acid; CS: Citrate synthase; Gln: Glutamine; Glu: Glutamic acid; GS: Glutamine synthetase; GSH: Glutathione; GSHS: Glutathione synthetase; GSNO: S-nitrosoglu- tathione; Hb: Hemoglobin; IDH: Isocitrate dehydrogenase; MDH: Malate dehydrogenase; NH4+: Ammonium ion; Nif: Nitrogenase; SDH: Succinate dehydrogenase; γ-EC: γ-glu- tamylcysteine; γ-ECS: γ-glutamyl cysteine synthetase
[1] | 何恒斌, 贾桂霞 ( 2013). 豆科植物早期共生信号转导的研究进展. 植物学报 48, 665-675. |
[2] | 李欣欣, 许锐能, 廖红 ( 2016). 大豆共生固氮在农业减肥增效中的贡献及应用潜力. 大豆科学 35, 531-535. |
[3] | 尚玉婷, 张妮娜, 上官周平, 陈娟 ( 2018). 硫化氢在植物中的生理功能及作用机制. 植物学报 53, 565-574. |
[4] | 张绪成, 上官周平, 高世铭 ( 2005). NO对植物生长发育的调控机制. 西北植物学报 25, 812-818. |
[5] |
Arjona D, Wikström M, Ädelroth P ( 2015). Nitric oxide is a potent inhibitor of the cbb3-type heme-copper oxidases. FEBS Lett 589, 1214-1218.
DOI URL PMID |
[6] |
Bartnikas TB, Wang YS, Bobo T, Veselo A, Scholes CP, Shapleigh JP ( 2002). Characterization of a member of the NnrR regulon in Rhodobacter sphaeroides 2.4.3 encoding a haem-copper protein: the GenBank accession number for nnrS is U62403. Microbiology 148, 825-833.
DOI URL PMID |
[7] |
Baudouin E, Pieuchot L, Engler G, Pauly N, Puppo A ( 2006). Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Mol Plant Microbe Interact 19, 970-975.
DOI URL PMID |
[8] | Berger A, Brouquisse R, Pathak PK, Hichri I, Singh I, Bhatia S, Boscari A, Igamberdiev AU, Gupta KJ ( 2018). Pathways of nitric oxide metabolism and operation of phytoglobins in legume nodules: missing links and future directions. Plant Cell Environ 41, 2057-2068. |
[9] |
Bethke PC, Badger MR, Jones RL ( 2004). Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16, 332-341.
DOI URL PMID |
[10] |
Blanquet P, Silva L, Catrice O, Bruand C, Carvalho H, Meilhoc E ( 2015). Sinorhizobium meliloti controls nitric oxide-mediated post-translational modification of a Medicago truncatula nodule protein. Mol Plant Microbe Interact 28, 1353-1363.
DOI URL PMID |
[11] |
Boscari A, del Giudice J, Ferrarini A, Venturini L, Zaffini AL, Delledonne M, Puppo A ( 2013). Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide? Plant Physiol 161, 425-439.
DOI URL PMID |
[12] |
Breakspear A, Liu CW, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore KS, Wen JQ, Oldroyd GED, Downie JA, Murray JD ( 2014). The root hair "infectome" of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell 26, 4680-4701.
DOI URL PMID |
[13] |
Calvo-Begueria L, Rubio MC, Martínez JI, Pérez-Ron- tomé C, Delgado MJ, Bedmar EJ, Becana M ( 2018). Redefining nitric oxide production in legume nodules through complementary insights from electron paramagnetic resonance spectroscopy and specific fluorescent probes. J Exp Bot 69, 3703-3714.
DOI URL PMID |
[14] |
Cam Y, Pierre O, Boncompagni E, Hérouart D, Meilhoc E, Bruand C ( 2012). Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. New Phytol 196, 548-560.
DOI URL PMID |
[15] |
Castillo MC, Lozano-Juste J, González-Guzmán M, Rodriguez L, Rodriguez PL, León J ( 2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci Signal 8, ra89.
DOI URL PMID |
[16] |
Chadha N, Mishra M, Rajpal K, Bajaj R, Choudhary DK, Varma A ( 2015). An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch Microbiol 197, 869-881.
DOI URL PMID |
[17] |
Chaki M, Kovacs I, Spannagl M, Lindermayr C ( 2014). Computational prediction of candidate proteins for S-nitrosylation in Arabidopsis thaliana. PLoS One 9, e110232.
DOI URL PMID |
[18] |
Cueto M, Hernández-Perera O, Martín R, Bentura ML, Rodrigo J, Lamas S, Golvano MP ( 1996). Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398, 159-164.
DOI URL PMID |
[19] |
De Bruijn FJ, Rossbach S, Bruan C, Parrish JR ( 2006). A highly conserved Sinorhizobium meliloti operon is induced microaerobically via the FixLJ system and by nitric oxide (NO) via NnrR. Environ Microbiol 8, 1371-1381.
DOI URL PMID |
[20] |
Dean JV, Harper JE ( 1988). The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88, 389-395.
DOI URL PMID |
[21] |
del Giudice J, Cam Y, Damiani I, Fung-Chat F, Meilhoc E, Bruand C, Brouquisse R, Puppo A, Boscari A ( 2011). Nitric oxide is required for an optimal establishment of the Medicago truncatula-Sinorhizobium meliloti symbiosis. New Phytol 191, 405-417.
DOI URL PMID |
[22] |
Desalvo MK, Sunagawa S, Voolstra CR, Medina M ( 2010). Transcriptomic responses to heat stress and bleaching in the Elkhorn coral Acropora palmata. Mar Ecol Prog Ser 402, 97-113.
DOI URL |
[23] |
Ding YL, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GED ( 2008). Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20, 2681-2695.
DOI URL PMID |
[24] |
Escuredo PR, Minchin FR, Gogorcena Y, Iturbe-Or- maetxe I, Klucas RV, Becana M ( 1996). Involvement of activated oxygen in nitrate-induced senescence of pea root nodules. Plant Physiol 110, 1187-1195.
DOI URL PMID |
[25] |
Ferrarini A, De Stefano M, Baudouin E, Pucciariello C, Polverari A, Puppo A, Delledonne M ( 2008). Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions. Mol Plant Microbe Interact 21, 781-790.
URL PMID |
[26] | Garg N, Geetanjali , (2007). Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C, eds. Sustainable Agriculture. Dordrecht: Springer. pp. 519-531. |
[27] |
Gonzalez-Rizzo S, Crespi M, Frugier F ( 2006). The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18, 2680-2693.
DOI URL PMID |
[28] |
Gupta KJ, Hebelstrup KH, Mur LAJ, Igamberdiev AU ( 2011). Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. FEBS Lett 585, 3843-3849.
DOI URL PMID |
[29] |
Hawkins TD, Krueger T, Becker S, Fisher PL, Davy SK ( 2014). Differential nitric oxide synthesis and host apoptotic events correlate with bleaching susceptibility in reef corals. Coral Reefs 33, 141-153.
DOI URL |
[30] |
Herold S, Puppo A ( 2005). Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules? J Biol Inorg Chem 10, 935-945.
DOI URL PMID |
[31] |
Hichri I, Boscari A, Castella C, Rovere M, Puppo A, Brouquisse R ( 2015). Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. J Exp Bot 66, 2877-2887.
DOI URL PMID |
[32] | Hichri I, Boscari A, Meilhoc E, Catalá M, Barreno E, Bruand C, Lanfranco L, Brouquisse R (2016a). Nitric oxide: a multitask player in plant-microorganism symbioses. In: Lamattina L, García-Mata C, eds. Gasotransmitters in Plants: The Rise of a New Paradigm in Cell Signaling. Cham: Springer. pp. 239-268. |
[33] | Hichri I, Meilhoc E, Boscari A, Bruand C, Frendo P, Brouquisse R ( 2016b). Nitric oxide: jack-of-all-trades of the nitrogen-fixing symbiosis? Adv Bot Res 77, 193-218. |
[34] |
Hill RD ( 2012). Non-symbiotic haemoglobins-what's happening beyond nitric oxide scavenging? AoB Plants 2012, pls004.
DOI URL PMID |
[35] | Horchani F, Prévot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Aschi- Smiti S, Puppo A, Brouquisse R ( 2011). Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 15, 1023-1036. |
[36] |
Hu JL, Huang XH, Chen LC, Sun XW, Lu CM, Zhang LX, Wang YC, Zuo JR ( 2015). Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167, 1731-1746.
DOI URL PMID |
[37] |
Iarullina DR, Asafova EV, Kartunova IE, Ziiatdinova GK, Il'inskaia ON ( 2014). Probiotics for plants: NO-producing lactobacilli protect plants from drought. Prikl Biokhim Mikrobiol 50, 189-192.
URL PMID |
[38] |
Igamberdiev AU, Hill RD ( 2004). Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55, 2473-2482.
URL PMID |
[39] |
Igamberdiev AU, Hill RD ( 2009). Plant mitochondrial function during anaerobiosis. Ann Bot 103, 259-268.
DOI URL PMID |
[40] |
Igamberdiev AU, Ratcliffe RG, Gupta KJ ( 2014). Plant mitochondria: source and target for nitric oxide. Mitochondrion 19, 329-333.
DOI URL PMID |
[41] |
Innocenti G, Pucciariello C, Le Gleuher M, Hopkins J, de Stefano M, Delledonne M, Puppo A, Baudouin E, Frendo P ( 2007). Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 225, 1597-1602.
URL PMID |
[42] |
Kato K, Kanahama K, Kanayama Y ( 2010). Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules. J Plant Physiol 167, 238-241.
DOI URL PMID |
[43] |
Kearns EV, Assmann SM ( 1993). The guard cell-environment connection. Plant Physiol 102, 711-715.
DOI URL PMID |
[44] |
Lee HW, Hitchcoc TM, Park SH, Mi R, Kraft JD, Luo J, Cao WG ( 2010). Involvement of thioredoxin domain-containing 5 in resistance to nitrosative stress. Free Radic Biol Med 49, 872-880.
DOI URL PMID |
[45] |
Li BH, Li GJ, Kronzucker HJ, Baluška F, Shi WM ( 2014). Ammonium stress in Arabidopsis: signaling, genetic loci, and physiological targets. Trends Plant Sci 19, 107-114.
DOI URL PMID |
[46] |
Lin AH, Wang YQ, Tang JY, Xue P, Li CL, Liu LC, Hu B, Yang FQ, Loake GJ, Chu CC ( 2012). Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158, 451-464.
DOI URL PMID |
[47] |
Loscos J, Matamoros MA, Becana M ( 2008). Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol 146, 1282-1292.
DOI URL PMID |
[48] |
Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M ( 1999). Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol 121, 879-888.
DOI URL PMID |
[49] |
Matamoros MA, Saiz A, Peñuelas M, Bustos-Sanmamed P, Mulet JM, Barja MV, Rouhier N, Moore M, James EK, Dietz KJ, Becana M ( 2015). Function of glutathione peroxidases in legume root nodules. J Exp Bot 66, 2979-2990.
DOI URL PMID |
[50] |
Meakin GE, Bueno E, Jepson B, Bedmar EJ, Richardson DJ, Delgado MJ ( 2007). The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. Microbiology 153, 411-419.
DOI URL PMID |
[51] |
Meilhoc E, Blanquet P, Cam Y, Bruand C ( 2013). Control of NO level in rhizobium-legume root nodules: not only a plant globin story. Plant Signal Behav 8, e25923.
DOI URL |
[52] |
Meilhoc E, Boscari A, Bruand C, Puppo A, Brouquisse R ( 2011). Nitric oxide in legume-rhizobium symbiosis. Plant Sci 181, 573-581.
DOI URL PMID |
[53] |
Melo PM, Silva LS, Ribeiro I, Seabra AR, Carvalho HG ( 2011). Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration. Plant Physiol 157, 1505-1517.
DOI URL PMID |
[54] |
Moreau M, Lindermayr C, Durner J, Klessig DF ( 2010). NO synthesis and signaling in plants-where do we stand?. Physiol Plant 138, 372-383.
DOI URL PMID |
[55] |
Mur LAJ, Prats E, Pierre S, Hall MA, Hebelstrup KH ( 2013). Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci 4, 215.
DOI URL PMID |
[56] |
Murakami EI, Nagata M, Shimoda Y, Kucho KI, Higashi S, Abe M, Hashimoto M, Uchiumi T ( 2011). Nitric oxide production induced in roots of Lotus japonicus by lipopolysaccharide from Mesorhizobium loti. Plant Cell Physiol 52, 610-617.
DOI URL PMID |
[57] |
Nagata M, Murakami EI, Shimoda Y, Shimoda-Sasakura F, Kucho KI, Suzuki A, Abe M, Higashi S, Uchiumi T ( 2008). Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Mol Plant Microbe Interact 21, 1175-1183.
DOI URL PMID |
[58] |
Navascués J, Pérez-Rontomé C, Gay M, Marcos M, Yang F, Walker FA, Desbois A, Abián J, Becana M ( 2012). Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules. Proc Natl Acad Sci USA 109, 2660-2665.
URL PMID |
[59] |
Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I ( 2008). Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59, 165-176.
DOI URL PMID |
[60] |
Palmieri MC, Sell S, Huang X, Scherf M, Werner T, Durner J, Lindermayr C ( 2008). Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59, 177-186.
DOI URL PMID |
[61] |
Pérez-Chaca MV, Rodríguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero- Puertas MC ( 2014). Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant Cell Environ 37, 1672-1687.
DOI URL PMID |
[62] |
Pérez Guerra JC, Coussens G, De Keyser A, De Rycke R, De Bodt S, Van De Velde W, Goormachtig S, Holsters M ( 2010). Comparison of developmental and stress-indu- ced nodule senescence in Medicago truncatula. Plant Physiol 152, 1574-1584.
DOI URL PMID |
[63] |
Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T ( 2007). Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol 7, 21.
URL PMID |
[64] |
Procházková D, Wilhelmová N ( 2011). Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. Nitric Oxide 24, 61-65.
DOI URL PMID |
[65] |
Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R ( 2013). Hydrogen peroxide and nitric oxide: key regulators of the legume- Rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 18, 2202-2219.
URL PMID |
[66] |
Radi R ( 2004). Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101, 4003-4008.
DOI URL PMID |
[67] |
Romanov VI, Fedulova NG, Tchermenskaya IE, Shramko VI, Molchanov MI, Kretovich WL ( 1980). Metabolism of poly-hydroxybutyric acid in bacteroids of Rhizobium lupini in connection with nitrogen fixation and photosynthesis. Plant Soil 56, 379-390.
DOI URL |
[68] |
Sainz M, Calvo-Begueria L, Pérez-Rontomé C, Wienkoop S, Abián J, Staudinger C, Bartesaghi S, Radi R, Becana M ( 2015). Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism. Plant J 81, 723-735.
DOI URL PMID |
[69] |
Sánchez C, Cabrera JJ, Gates AJ, Bedmar EJ, Richardson DJ, Delgado MJ ( 2011). Nitric oxide detoxification in the rhizobia-legume symbiosis. Biochem Soc Trans 39, 184-188.
DOI URL PMID |
[70] |
Sánchez C, Gates AJ, Meakin GE, Uchiumi T, Girard L, Richardson DJ, Bedmar EJ, Delgado MJ ( 2010). Production of nitric oxide and nitrosylleghemoglobin complexes in soybean nodules in response to flooding. Mol Plant Microbe Interact 23, 702-711.
DOI URL PMID |
[71] | She XP, Song XG, He JM ( 2004). Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba. Acta Bot Sin 46, 1292-1300. |
[72] |
Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T ( 2005). Symbiotic rhizobium and nitric oxide induce gene expression of non- symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol 46, 99-107.
DOI URL PMID |
[73] |
Singh VP, Singh S, Kumar J, Prasad SM ( 2015). Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: possible involvement of nitric oxide. J Plant Physiol 181, 20-29.
URL PMID |
[74] |
Smil V ( 1999). Detonator of the population explosion. Nature 400, 415.
DOI URL |
[75] |
Suzuki A, Akune M, Kogiso M, Imagama Y, Osuk K, Uchiumi T, Higashi S, Han SY, Yoshida S, Asami T, Abe M ( 2004). Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol 45, 914-922.
DOI URL PMID |
[76] | Swaraj K, Sheokand S, Fernandez-Pascual MM, de Felipe MR ( 2001). Dark-induced changes in legume nodule functioning. Aust J Plant Physiol 28, 429-438. |
[77] |
Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho KI, Hashiguchi M, Akashi R, Hirsch A, Arima S, Suzuki A ( 2010). Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicus. Plant Signal Behav 5, 440-443.
DOI URL PMID |
[78] |
Trevaskis B, Watts RA, Andersson CR, Llewellyn DJ, Hargrove MS, Olson JS, Dennis ES, Peacock WJ ( 1997). Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc Natl Acad Sci USA 94, 12230-12234.
DOI URL PMID |
[79] |
Van de Velde W, Guerra JCP, De Keyser A, De Rycke R, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S ( 2006). Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141, 711-720.
DOI URL PMID |
[80] |
Vinardell JM, Fedorova E, Cebolla A, Kevei Z, Horvath G, Kelemen Z, Tarayre S, Roudier F, Mergaert P, Kondorosi A, Kondorosi E ( 2003). Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula nodules. Plant Cell 15, 2093-2105.
DOI URL PMID |
[81] |
Wally OSD, Mira MM, Hill RD, Stasolla C ( 2013). Hemoglobin regulation of plant embryogenesis and plant pathogen interaction. Plant Signal Behav 8, e25264.
DOI URL PMID |
[82] |
Wodala B, Deák Z, Vass I, Erdei L, Altorjay I, Horváth F ( 2008). In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves. Plant Physiol 146, 1920-1927.
DOI URL PMID |
[83] |
Yoshida T, Mogami J, Yamaguchi-Shinozaki K ( 2015). Omics approaches toward defining the comprehensive abscisic acid signaling network in plants. Plant Cell Physiol 56, 1043-1052.
DOI URL PMID |
[84] |
Zeiger E ( 1983). The biology of stomatal guard cells. Annu Rev Plant Physiol 34, 441-474.
DOI URL |
[85] |
Zimmer-Prados LM, Moreira ASFP, Magalhaes JR, França MGC ( 2014). Nitric oxide increases tolerance responses to moderate water deficit in leaves of Phaseolus vulgaris and Vigna unguiculata bean species. Physiol Mol Biol Plants 20, 295-301.
DOI URL PMID |
[1] | 陈佳欣, 梅浩, 黄彩翔, 梁宗原, 全依桐, 李东鹏, 布威麦尔耶姆·赛麦提, 李欣欣, 廖红. 利用转基因毛状根高效培育大豆嵌合植株的方法[J]. 植物学报, 2024, 59(1): 89-98. |
[2] | 袁园园, 王丽, 赵盼盼, 王林嵩. 棉花类结瘤素MtN21基因家族生物信息学分析[J]. 植物学报, 2016, 51(4): 515-524. |
[3] | 丑敏霞, 魏新元. 豆科植物共生结瘤的分子基础和调控研究进展[J]. 植物生态学报, 2010, 34(7): 876-888. |
[4] | 胡江 孙淑斌 徐国华. 植物中丛枝菌根形成的信号途径研究进展[J]. 植物学报, 2007, 24(06): 703-713. |
[5] | 李苏梅, 龙春林, 刀志灵. 传统农业生态系统中桤木改良土壤效应研究综述[J]. 植物生态学报, 2006, 30(5): 878-886. |
[6] | 赵晓刚 徐张红 何奕昆 张飞雄 裴真明. NO在植物中的调控作用[J]. 植物学报, 2004, 21(01): 44-51. |
[7] | 聂湘平, 蓝崇钰, 束文圣, 张志权, 黄铭洪. 锌对大叶相思-根瘤菌共生固氮体系影响研究[J]. 植物生态学报, 2002, 26(3): 264-268. |
[8] | 沈世华 朱至清. 新型植物生长调节物质——激素性多肽的研究进展[J]. 植物学报, 1999, 16(06): 648-652. |
[9] | 王作明, 蚁伟民, 余作岳, 丁明懋. 豆科树种回接根瘤菌的研究[J]. 植物生态学报, 1996, 20(4): 363-370. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||