植物学报

• 特邀综述 • 上一篇    下一篇

人工智能在离子逆境适生种质创新中的发展与应用

闫慧莉1, 2#, 秦雅婷3#, 周运转1, 2, 张怀4, 李斌峰4, 公保南加5, 张生燕6, 许文秀1, 2, 宋晓彦3*, 何振艳1, 2*   

  1. 1 饲草种质高效设计与利用全国重点实验室, 中国科学院植物研究所, 北京 100010; 2 国家植物园, 北京 100010; 3 山西农业大学农学院, 山西农业大学, 山西 030801; 4 青海牛必乐农牧科技有限公司, 西宁 810003; 5 尖扎县农牧业综合服务中心, 黄南藏族自治州 811299; 6 海东市平安区农业农村和科技局, 海东 810699
  • 收稿日期:2025-09-30 修回日期:2025-12-13 出版日期:2026-01-12 发布日期:2026-01-12
  • 通讯作者: 宋晓彦, 何振艳
  • 基金资助:
    青海省重点研发与转化计划(No.2025-NK-126)、国家重点研发计划(No.2023YFD1200700, No.2023YFF1001304)、科技创新2030-重大项目(No.2023ZD04072)、国家自然科学基金资助项目(No.U23A20183)

AI-driven Innovation in Ion Stress-Tolerant Germplasm: Development and Applications

Huili Yan1, 2#, Yating Qin3#, Yunzhuan Zhou1, 2, Huai Zhang4, Binfeng Li4, Nanja Gongbao5, Shengyan Zhang6, Wenxiu Xu1, 2, Xiaoyan Song3*, Zhenyan He1, 2*   

  1. 1College of Agriculture, Shanxi Agricultural University, Shanxi 030801, China; 2State Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing, 100010, China; 3National Botanical Garden, Beijing 100010, China; 4Qinghai Cattle Pierer Husbandry Technology Co.Ltd, Xi’ning 810003, China; 5Jianzha County Agriculture & Animal Husbandry Integrated Service Center, Huangnan Zang Autonomous Prefecture, 811299, China; 6Haidong Ping'an District Bureau of Agriculture, Rural Areas and Science & Technology, Haidong, 810699, China
  • Received:2025-09-30 Revised:2025-12-13 Online:2026-01-12 Published:2026-01-12
  • Contact: Xiaoyan Song, Zhenyan He

摘要: 随着全球气候变化与人类活动加剧, 盐碱化与重金属污染等离子逆境导致的耕地退化日益严峻, 威胁粮食安全。人工智能技术的快速发展为离子逆境适生种质创新提供了新范式。本文系统综述了人工智能在离子逆境适生种质创新中的关键进展与应用, 在表型组方面, 多维度表型组采集系统整合RGB成像(Red Green Blue Imaging)、光谱传感、荧光成像、热红外成像与X射线荧光光谱(X-rayFluorescenceSpectrometer, XRF)等技术, 结合机器学习、深度学习与多源数据融合, 实现对离子逆境胁迫表型的早期、精准与无损识别。在智慧育种方面, 人工智能在加速基因挖掘、解析遗传多样性解析、多基因调控网络预测与全基因组选择等方向显著提升育种效率。然而, 当前仍面临数据标准化与共享机制不完善、基因型-环境互作(Genotype-by-Environment Interaction, G×E)模型预测精度有待提升、以及技术推广成本较高等挑战, 制约了技术的规模化应用。展望未来, 随着数据整合能力不断增强, 算法持续优化以及技术普及程度的不断提高, 人工智能有望在退化耕地治理与农业可持续发展中发挥更大作用, 为保障全球粮食安全提供强有力的技术支撑。

关键词: 人工智能技术, 离子逆境, 适应性育种, 高通量植物表型技术, 机器学习

Abstract: Global climate change and intensive human activities have led to increasing degradation of arable land due to ionic stress, such as salinization and heavy metal contamination, posing a significant threat to food security. The rapid development of artificial intelligence (AI) technology offers a new approach for germplasm innovation for stress adaptation. This review systematically summarizes key advances and applications of AI in germplasm innovation for ionic stress tolerance. In terms of phenomics, multi-dimensional phenotyping systems integrate technologies including RGB imaging, spectral sensing, fluorescence imaging, thermal infrared imaging, and XRF. These are coupled with machine learning, deep learning, and multi-source data fusion to enable early, accurate, and non-invasive identification of ionic stress responses. In smart breeding, machine learning accelerates gene discovery, while pangenomics elucidates genetic diversity. AI-driven prediction of multi-gene regulatory networks and genomic selection significantly enhance breeding efficiency. However, challenges such as insufficient data standardization and sharing, limited prediction accuracy of genotype-environment interaction (G×E) models, and high technology promotion costs still constrain large-scale application. Future efforts focused on data integration, algorithm optimization, and technology popularization are expected to allow AI to play a greater role in the remediation of degraded farmland and in achieving sustainable agricultural development.

Key words: artificial intelligence technology,  ionic stress,  adaptive breeding,  high-throughput plant phenotyping technology,  machine learning