王娅蒙,王旭,马紫嫣,王波
收稿日期:2025-09-10
修回日期:2025-11-04
出版日期:2025-12-16
发布日期:2025-12-16
通讯作者:
王波
基金资助:xu wang bo wang2
Received:2025-09-10
Revised:2025-11-04
Online:2025-12-16
Published:2025-12-16
Contact:
bo wang
摘要: 高温和干旱交叉胁迫是影响荒漠植物梭梭(Haloxylon ammodendron)幼苗存活的关键环境因子。为探究梭梭microRNA(Ha-miRNA)在高温和干旱交叉胁迫响应中的分子功能,本研究通过小RNA测序技术,鉴定出梭梭幼苗在高温-干旱交叉胁迫下差异表达的5个Ha-miRNA,包括上调的Ha-miR319b、Ha-miR166a、Ha-miR171a和下调的Ha-miR157a、Ha-miR7534。预测分析发现,Ha-miR7534无靶基因,其余4个Ha-miRNA 靶向30个非生物胁迫响应基因,编码TCP转录因子、丙酮酸脱氢酶等关键功能蛋白。qRT-PCR验证显示,4个Ha-miRNA与靶基因存在显著负调控关系。功能富集分析表明,4个Ha-miRNA通过调控细胞有氧代谢、糖代谢等次生代谢途径和胁迫记忆相关通路,协同增强梭梭的交叉胁迫适应性。本研究为阐明荒漠植物逆境适应的表观遗传机制提供了新见解,并为抗逆育种提供了潜在分子靶点。
王娅蒙 王旭 马紫嫣 王波. 梭梭响应高温-干旱交叉胁迫的microRNA鉴定. 植物学报, DOI: 10.11983/CBB25164.
xu wang bo wang. Identification and Functional Analysis of microRNAs in Response to Combined Heat-Drought Stress in Haloxylon ammodendron. Chinese Bulletin of Botany, DOI: 10.11983/CBB25164.
| [1]?e?i? E, Kogel KH, Ladera-Carmona MJ (2021). Biotic stress-associated microRNA families in plants.?Journal of Plant Physiology?263, 153451. [2]Xu Y, Chen XM (2023). MicroRNA biogenesis and stabilization in plants.?Fundamental Research?3, 707–717. [3]Jodder J (2021). Regulation of pri-MIRNA processing: mechanistic insights into the miRNA homeostasis in plant.?Plant Cell Reports?40, 783–798. [4]Ma ZM, Hu LJ (2023). MicroRNA: a dynamic player from signalling to abiotic tolerance in plants.?International Journal of Molecular Sciences?24. [5]Tan HJ, Li BS, Guo HW (2020). The diversity of post-transcriptional gene silencing mediated by small silencing RNAs in plants.?Essays in Biochemistry 64, 919–930. [6]Li M, Yu B (2021). Recent advances in the regulation of plant miRNA biogenesis.?RNA Biol?18, 2087–2096. [7]Song XW,Li Y,Cao XF,Qi YJ (2019). MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions.?Annu Rev Plant Biol?70, 489-525. [8]Ravinath R,Sagar YN,Mankal N,Rajagopal S (2024). MicroRNA—the promising molecular tool for engineering stress resistance in crop plants.?Russ J Plant Physiol 71, 115. [9]Lawas LMF,Zuther E,Jagadish SVK,Hincha DK (2018). Molecular mechanisms of combined heat and drought stress resilience in cereals.?Curr Opin Plant Biol?45, 212-217. [10]Waititu JK,Zhang CY,Liu J,Wang H (2020). Plant Non-Coding RNAs: Origin, Biogenesis, Mode of Action and Their Roles in Abiotic Stress.?Int J Mol Sci?21, 8401. [11]Begum Y (2022). Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants.?Gene?821, 146283. [12]Ding YF, Huang LZ, Jiang Q, Zhu C (2020). MicroRNAs as important regulators of heat stress responses in plants.?J Agric Food Chem 68, 11320–11326. [13]Rao S,Gupta A,Bansal C,Sorin C,Crespi M,Mathur S (2022). A conserved HSF:miR169:NF-YA?loop involved in tomato and Arabidopsis heat stress tolerance.?Plant J?112, 7-26. [14]Zhao YY, Xie JB, Wang S, Xu WJ, Chen SS, Song XQ,Lu MZ,ElKassaby YA,Zhang DQ (2024). Synonymous mutation of miR396a target sites in Growth Regulating Factor 15 (GRF15) enhances photosynthetic efficiency and heat tolerance in poplar.?J Exp Bot?72, 4502-4519. [15]Kumar D,Ramkumar MK,Dutta B,Kumar A,Pandey R,Jain PK,Gaikwad K,Mishra DC,Chaturvedi KK,Rai A,Solanke AU,Sevanthi AM (2023). Integration of miRNA dynamics and drought tolerant QTLs in rice reveals the role of miR2919 in drought stress response.?BMC Genomics?24, 526. [16]Chai WB,Song NN,Su AQ,Wang J,Si WN,Cheng BJ,Jiang HY (2021). ZmmiR190 and its target regulate plant responses to drought stress through an ABA-dependent pathway.?Plant Sci?312, 111034. ? [17]Niu MX,Feng CH,He F,Zhang H,Bao Y,Liu SJ,Liu X,Su YY,Liu C,Wang HL,Yin WL,Xia XL (2024). The miR6445-NAC029 module regulates drought tolerance by regulating the expression of glutathione S-transferase U23 and reactive oxygen species scavenging in Populus.?New Phytologist?242, 2043–2058. [18]Siddique AB,Parveen S,Rahman MZ,Rahman J (2024). Revisiting plant stress memory: mechanisms and contribution to stress adaptation.?Physiol Mol Biol Plants 30, 349–367. [19]Sharma M,Kumar P,Verma V,Sharma R,Bhargava B,Irfan M (2022). Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects.?Plant Physiol Biochem 179, 10-24. [20]Junaid MD,Chaudhry UK,?anl? BA,G?k?e AF,?ztürk ZN (2024). A review of the potential involvement of small RNAs in transgenerational abiotic stress memory in plants.?Funct. Integr. Genomics?24, 74. [21]张浩彬 (2022). 小麦干旱记忆相关miRNA的鉴定及其生物学功能分析.硕士论文.陕西:西北农林科技大学. [22]Kushawaha AK,Khan A,Sopory SK,SananMishra N (2023). Priming by high temperature stress induces microRNA regulated heat shock modules indicating their involvement in thermomemory.?Life (Basel)?112, 291. [23]Zandalinas SI,Mittler R (2022). Plant responses to multifactorial stress combination.?New Phytol?234, 1161–1167. [24]LI YJ, Cao YM, Zhang JX, Zhu CJ,Tang GL,Yan J (2023). Maize miR408 and miR398 are involved in the cross-talk between the oxidative stress response and high-temperature/drought stress responses.?Plant Cell Environ 46, 2349–2365. [25]王波,薛源,潘绒,任文静,张桦 (2021). 梭梭幼苗在高温胁迫适应性建立过程中的细胞死亡特征分析.?分子植物育种?19, 5157–5163. [26]刘深思,徐贵青,米晓军,陈图强,李彦 (2022). 地下水埋深和季节性干旱对古尔班通古特沙漠南缘梭梭生理和生长的影响. 生态学报 42, 8881–8891. [27]刘媛媛,王旭,魏琪, 车丽娟,袁梦,王波 (2025). 梭梭14-3-3蛋白HaFT-9在高温-干旱胁迫信号交叉调控中的功能研究.草业学报 34,134-146. [28]袁梦, 车丽娟, 任文静, 魏琪,陈建茹,王旭,刘媛媛,王波 (2025). 梭梭bZIP转录因子HabZIP60在二次高温胁迫响应中的功能分析. 植物生理学报 61, 249–262. [29]Ilicic T,Kim JK,Kolodziejczyk AA,Bagger FO,McCarthy DJ,Marioni JC,Teichmann SA (2016). Classification of low quality cells from single-cell RNA-seq data.?Genome Biol?17, 29. [30]Gupta S,Kumari M,Kumar H,Varadwaj PK (2020). Genome-wide analysis of miRNA and siRNA populations in a commercial maize (Zea mays) hybrid.?G3: Genes, Genomes, Genetics?10, 3043–3051. [31]The Gene Ontology Consortium (2021). The Gene Ontology resource: enriching a GOld mine.?Nucleic Acids Res?49, D325-D334. [32]Kanehisa M,Furumichi M,Sato Y,Kawashima M,Ishiguro-Watanabe M (2023). KEGG for taxonomy-based analysis of pathways and genomes.?Nucleic Acids Res?51, D587–D592. [33]Zhou CZ,Yang NN,Tian CY,Wen SJ,Zhang C,Zheng AR,Hu XW,Fang JX,Zhang ZD,Lai ZX,Lin YL,Guo YQ (2024). The miR166 targets CsHDZ3 genes to negatively regulate drought tolerance in tea plant (Camellia sinensis).?Int J Biol Macromol??264, 130735. [34]周文杰,张文瀚,贾玮,许自成,黄五星 (2024). 植物miRNA响应非生物胁迫研究进展. 植物学报 59, 810–833. [35]Um T,Choi J,Park T,Chung PJ,Jung SE,Shim JS,Kim YS,Choi I,Park SC,Oh S,Seo JS,Kim JK (2022). Rice microRNA171f/SCL6 module enhances drought tolerance by regulation of flavonoid biosynthesis genes.?Plant Direct 6, e374. [36]Olivoto T,Nardino M,Carvalho IR,Follmann DN,Szareski VJ,Ferrari M,de Pelegrin AJ,de Souza VQ (2017). Plant secondary metabolites and its dynamical systems of induction in response to environmental factors: A review.?Afr J Agric Res?12,71-84. [37]Tiwari P,Rao M,Kumar S,Kumar N,Rani V,Behera TK,Singh M,Singh PM (2021). JA-mediated transcriptional regulation of secondary metabolism in judicious improvement of Solanaceae vegetables?Sci Hortic.?291, 110534. [38]Zhang Y,Cao XY,Wu F,Lin XY,Zhu RY,Zhou HW,Liu Y,Wang KY,Zhang BH,Li F (2022). SmNAC37 positively regulates phenolic acid biosynthesis and drought resistance in Salvia miltiorrhiza. Hortic. Res 9, uhac198. [39]Sami A,Naz S,Ahsan M,Ihtisham M,Iqbal MA,Hussain MA,Akbar M,Ali T,Umer M,Khan MZ,Haider MZ,Zeeshan M (2021). Role of secondary metabolites in abiotic stress tolerance in cereals.?Plant Growth Regul.?95, 1-15. [40]Billi M,De Marinis E,Gentile M,Nervi C,Grignani F (2024). Nuclear miRNAs: Gene Regulation Activities.?Int J Mol Sci?25, 6066. [41]Etchells JP,Datla RR,Grewal S (2020). The miR319-TCP module: a key player in plant development and environmental adaptations.?Annu Rev Plant Biol?71, 117-145. [42]Liu Q,Liu, YH,Wang YM,Zhang XY,Zhang LW,Xie YR (2023). MicroRNA319 regulates drought tolerance in Arabidopsis thaliana by targeting TCP genes.?Plant Physiol. Biochem.?194: 708-718. [43]Zhang Y,Zhang XD,Liu YM,Yuan XL,Zhang YY,Zhang YX,Zhou Y,Wang YJ,Du K,Wang R,Gao JW,Zhang XH,Liang Y,Yi B,Wen J, Ma CZ,Shen JX,Fu TD,Tu JX(2022). The miR319/TCP module regulates petal size in Brassica napus.?Plant J?111, 1713-1726. [44]Wang L,Guo TZ,Wang Y,Li F (2020). Roles of LRR receptor-like kinases in plant immune signaling transduction. J Integr.Plant Biol 62, 1105-1119. [45]Bansal KC,Jain D,Pandey J,Singh A,Singh IK,Yadav M (2023). Mechanisms of abiotic stress tolerance in plants: a comprehensive review.?Plant Cell Rep?42, 789-805. [46]Li J,Cao YM,Zhang JX,Zhu CJ,Tang GL,Yan J (2023). The miR165/166-PHABULOSA module promotes thermotolerance by transcriptionally and posttranslationally regulating HSFA1.?Plant Cell?35, 2952-2971. [47]Reid MA,Dai Z,Locasale JW?(2021). The impact of cellular metabolism on chromatin dynamics and epigenetics.?Nature?592, 684-685. [48]Shao ZY,Bian LQ,Ahmadi SK,Daniel TJ,Belmonte MA,Burns JG,Kotla P,Bi Y,Shen ZX,Xu SL,Wang ZY,Briggs SP,Qiao H (2024). Nuclear pyruvate dehydrogenase complex regulates histone acetylation and transcriptional regulation in the ethylene response. Sci Adv 10. [49]Wang Y,Chen YY,Hao YJ,Ma FW,Li MJ (2022). An apple short-chain dehydrogenase/reductase MdSDR affects cuticular wax accumulation and enhances resistance to fungal pathogens. Plant Sci 325,111475. [50]Kiser PD,Golczak M?(2021). Thematic Review Series: Lipid Droplets and Their Patrons: The Assembly of Lipid Droplets and Their Roles in Challenging Environments.?J Lipid Re.?62, 100038. [51]Zhao HM,Cao HQ,Zhang M,Deng SF,Li TT,Xing SP (2022). Genome-Wide Identification and Characterization of SPL Family Genes in Chenopodium quinoa.?Genes?13, 1455. [52]Sintaha M (2025). Molecular mechanisms of plant stress memory: roles of non-coding RNAs and alternative splicing. Plants 14, 2021. [53]Lamelas L,López-Hidalgo C,Valledor L,Meijón M,Ca?al MJ (2024). Like mother like son: Transgenerational memory and cross-tolerance from drought to heat stress are identified in chloroplast proteome and seed provisioning in Pinus radiata.?Plant Cell Environ?47, 1640-1655. |
| [1] | 李文竹, 栾军伟, 邸雅平, 王一, 陈志成, 聂秀青, 刘世荣. 模拟干旱对菌根介导下暖温带锐齿栎林土壤酶活性和土壤有机碳组分的影响[J]. , 2026, 50(菌根生态学): 0-. |
| [2] | 田地, 迟小龙, 石亮, 刘宵含, 赵常提, 吴梅, 张玉忠, 高永亮. 塞罕坝地区优势造林树种叶片化学计量特征及其环境驱动[J]. , 2026, 50(化学计量与功能性状): 0-. |
| [3] | 贾慧琳, 倪隆康, 秦佳双, 廖苏慧, 谭羽, 何佳懿, 顾大形. 极端干旱后喀斯特树木水力功能恢复动态及其影响因素[J]. , 2025, 49(预发表): 0-. |
| [4] | 刘影, 李疆枫, 吴佳琪, 王艺帆, 尹清琳, 王静. 干旱下草地植物糙隐子草根系和菌根真菌对土壤碳氮的影响[J]. 植物生态学报, 2025, 49(9): 1388-1398. |
| [5] | 冯梅, 欧阳胜男, 李迈和, 周晓倩, 铁烈华, 申卫军, 段洪浪. 前期氮添加对无梗花栎幼苗干旱响应中地上-地下碳氮分配动态的影响[J]. 植物生态学报, 2025, 49(9): 1527-1542. |
| [6] | 王尧, 王耀彬, 陈子彦, 伊如汉, 白永飞, 赵玉金, 金晶炜. 连续干旱对蒙古高原草地恢复力和抵抗力的影响[J]. 植物生态学报, 2025, 49(7): 1070-1081. |
| [7] | 张斌, 张浩成, 乔天, 吕治兵, 许亚男, 李雪芹, 原向阳, 冯美臣, 张美俊. 接种丛枝菌根真菌对干旱胁迫燕麦非结构性碳水化合物及碳氮磷化学计量特征的影响[J]. 植物生态学报, 2025, 49(7): 1082-1095. |
| [8] | 孙月, 郭树娟, 赵惠贤, 马猛, 刘香利. 小麦14-3-3蛋白TaGRF3-D基因克隆及功能分析[J]. 植物学报, 2025, 60(6): 863-874. |
| [9] | 马富龙, 王雨晴, 郝瑜, 段继超, 刘霏霏, 席琳乔, 韩路. 海拔梯度对昆仑山北坡中部草原植物与土壤微生物群落结构与多样性的影响[J]. 植物生态学报, 2025, 49(5): 732-747. |
| [10] | 王秀媛, 申磊, 刘婷婷, 尉雯雯, 张帅, 张伟. ‘塞外红’苹果-大豆复合系统根系时空分布与种间竞争策略[J]. 植物生态学报, 2025, 49(5): 748-759. |
| [11] | 刘柯言, 韩璐, 宋午椰, 张初蕊, 胡旭, 许行, 陈立欣. 基于日光诱导叶绿素荧光探测干旱对黄土高原植被光合稳定性的影响[J]. 植物生态学报, 2025, 49(3): 415-431. |
| [12] | 赵洪贤, 刘鹏, 史曼英, 徐铭泽, 贾昕, 田赟, 查天山. 毛乌素沙地典型固沙植物黑沙蒿和赖草叶片氮分配对最大净光合速率的影响[J]. 植物生态学报, 2025, 49(3): 460-474. |
| [13] | 邵畅畅, 段洪浪, 赵熙州, 丁贵杰. 树木干旱死亡点预测及致死生理机制研究进展[J]. 植物生态学报, 2025, 49(2): 221-231. |
| [14] | 王堃莹, 邱贵福, 刘子赫, 孟君, 刘宇轩, 贾国栋. 气候变化对不同退化程度小叶杨林分生长和内在水分利用效率的调节[J]. 植物生态学报, 2025, 49(2): 343-355. |
| [15] | 樊蓓, 任敏, 王延峰, 党峰峰, 陈国梁, 程国亭, 杨金雨, 孙会茹. 番茄SlWRKY45转录因子在响应低温和干旱胁迫中的功能(长英文摘要)[J]. 植物学报, 2025, 60(2): 186-203. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||