葛剑斌1, 吴兴鑫1, 张军2, 金小军2, 周宇生1, 朱雨涵1, 卢心可1, 金松恒3, 董彬1*
收稿日期:
2025-05-30
修回日期:
2025-08-21
出版日期:
2025-09-03
发布日期:
2025-09-03
通讯作者:
董彬
Jianbin Ge1, Xingxin Wu1, Jun Zhang2, Xiaojun Jin2, Yusheng Zhou1, Yuhan Zhu1, Xinke Lu1, Songheng Jin3, Bin Dong1*
Received:
2025-05-30
Revised:
2025-08-21
Online:
2025-09-03
Published:
2025-09-03
Contact:
Bin Dong
摘要: 无刺枸骨(Ilex cornuta ‘Fortunei’)在园林绿化中应用非常普遍, 也是常见的造型树种。高效简便的原生质体制备分离体系对于木本植物育种和基因研究具有重要价值。该研究以无刺枸骨幼嫩叶片为材料, 采用L9(34)正交试验、浓度梯度实验探究影响原生质体分离的影响因素, 并采用聚乙二醇(PEG-4000)介导法进行原生质体瞬时转化。结果表明, 2.5% (W/V)纤维素酶、1.0% (W/V)离析酶、0.5% (W/V)果胶酶和0.4% (W/V)蜗牛酶为最适酶浓度组合; 酶解3.5小时后, 原生质体产量最高, 达1.18×107∙g–1 FW, 活力为68.30%。通过40% (W/V) PEG-4000介导转化pORE_R4-IcFPS2质粒后, 在激光共聚焦显微镜下可观察到细胞核内的绿色荧光信号和DAPI蓝色荧光信号。研究成功构建了无刺枸骨原生质体高效分离体系, 为后续无刺枸骨的原生质融合育种及基因功能研究奠定了基础。
葛剑斌, 吴兴鑫, 张军, 金小军, 周宇生, 朱雨涵, 卢心可, 金松恒, 董彬. 无刺枸骨原生质体制备与瞬时转化体系建立. 植物学报, DOI: 10.11983/CBB25096.
Jianbin Ge, Xingxin Wu, Jun Zhang, Xiaojun Jin, Yusheng Zhou, Yuhan Zhu, Xinke Lu, Songheng Jin, Bin Dong. Preparation of Protoplasts from Ilex cornuta ‘Fortunei’ Leaves and Establishment of a Transient Transformation System. Chinese Bulletin of Botany, DOI: 10.11983/CBB25096.
[1]高成昱, 王艺衡, 靳江周, 李涛, 李金斗, 周梦瑶, 张海霞, 马辉, 张玉星, 亓宝秀, 许建锋(2023)(2023).梨叶片原生质体制备方法的建立及其基因瞬时转化试验. 园艺学报 50(05), 1141-1150..园艺学报, 50:1141-1150. [2]景欢欢, 李冰清, 牛晓茹, 陈己任(2022)(2022).月季原生质体制备及培养的研究进展. 分子植物育种 20(02), 1-13..分子植物育种, 20:1-13. [3]李岩硕, 王民炎, 刘殿宽, 李伟, 殷恒福(2025).马尾松原生质体制备及瞬时转化体系的建立.植物研究, 45:202-210. [4]彭邵锋, 陆佳, 陈永忠, 王瑞, 陈隆升, 马力, 王湘南(2013)(2013).木本植物原生质体培养体系研究进展.中国农学通报 29(01), 1-6..中国农学通报, 29:1-6. [5]Ahmed MA, Miao M, Pratsinakis ED, Zhang H, Wang W, Yuan Y, Lyu M, Iftikhar J, Yousef AF, Madesis P, Wu B(2021)(2021).Protoplast Isolation, Fusion, Culture and Transformation in the Woody Plant Jasminum spp. Agriculture-Base 11(8), 699..Agriculture-Base, 11:699-699. [6]Avila-Peltroche J, Won BY, Cho TO(2021)(2021).Protoplast isolation from Dictyopteris pacifica and Scytosiphon lomentaria, using a simple commercial enzyme preparation. Journal of Genetic Engineering and Biotechnology 19, 1?7..Journal of Genetic Engineering and Biotechnology, 19:1-7. [7]Hu B, Dong MY, Liu RN, Shan W, Wang Y, Ding Y, Peng JY, Meng LY, Wang CY, Zhou Q(2024)(2024).Establishment of an Efficient Protoplast Isolation and Transfection Method for Eucommia ulmoides Oliver. Frontiers in Bioscience-Landmark 29(95), 187..Frontiers in Bioscience-Landmark, 29:187-187. [8]Hyden B, Yuan GL, Liu Y, Smart LB, Tuskan GA, Yang XH(2022)(2022).Protoplast-Based Transient Expression and Gene Editing in Shrub Willow (Salix purpurea L.). Plants 11(24), 3490..Plants, 11:3490-3490. [9]Jamet E, Dunand C(2020)(2020).Plant Cell Wall Proteins and Development. International Journal of Molecular Sciences 21(8), 2731..International Journal of Molecular Sciences, 21:2731-2731. [10]Jeong YY, Lee HY, Kim SW, Noh YS, Seo PJ(2021)(2021).Optimization of protoplast regeneration in the model plant Arabidopsis thaliana. Plant Methods 17, 1?16..Plant Methods, 17:1-16. [11]Kolasinliler G, Akkale C, Kaya HB(2025)(2025).Establishing a reliable protoplast system for grapevine: isolation, transformation, and callus induction. Protoplasma 262(3), 1?17..Plant Methods, 262:1-17. [12]Lai Q, Wang Y, Zhou Q, Zhao Z(2020)(2020).Isolation and purification of mesophyll protoplasts from Ginkgo biloba L. Cytologia 85(1), 27?32..Cytologia, 85:27-32. [13]Lin Z, Huang LJ, Yu PY, Chen JL, Du SX, Qin GN, Zhang L, Li N, Yuan DY(2023)(2023).Development of a protoplast isolation system for functional gene expression and characterization using petals of Camellia Oleifera. Plant Physiology and Biochemistry 201, 107885..Plant Physiology and Biochemistry, 201:107885-107885. [14]Lin HY, Chen JC, Fang SC(2018)(2018).A protoplast transient expression system to enable molecular, cellular, and functional studies in Phalaenopsis orchids. Frontiers in Plant Science 9, 843..Frontiers in Plant Science, 9:843-843. [15]Liu H, Sun PP, Tong YQ, Gao XL, Tang ZH, Fan GZ(2024)(2024).Establishment of transient and stable gene transformation systems in medicinal woody plant Acanthopanax senticosus. Chemical and Biological Technologies in Agriculture 11(1), 142..Chemical and Biological Technologies in Agriculture, 11:142-142. [16]Li YL, Huang CJ, Liu Y, Zeng JM, Yu HQ, Tong ZJ, Yuan XJ, Sui XY, Fang DH, Xiao BG, Zhao SC, Yuan C(2023)(2023).CRISPR/Cas9-mediated seamless gene replacement in protoplasts expands the resistance spectrum to TMV-U1 strain in regenerated Nicotiana tabacum. Plant Biotechnology Journal 21(12), 2641?2653..Plant Biotechnology Journal, 21:2641-2653. [17]Naing AH, Adedeji OS, Kim CK(2021)(2021).Protoplast technology in ornamental plants: current progress and potential applications on genetic improvement. Scientia Horticulturae 283, 110043..Scientia Horticulturae, 283:110043-110043. [18]Priyadarshani S, Hu B, Li W, Ali H, Jia H, Zhao L, Ojolo SP, Azam SM, Xiong J, Yan M, Rahman Z, Wu Q, Qin Y(2018)(2018).Simple protoplast isolation system for gene expression and protein interaction studies in pineapple (Ananas comosus L.). Plant Methods 14, 1?12..Plant Methods, 14:1-12. [19]Qin X, Li W, Liu Y, Tan M, Ganal M, Chetelat RT(2018)(2018).A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility. The Plant Journal 93(3), 417?430..The Plant Journal, 93:417-430. [20]Ren R, Gao J, Yin D, Li Kai, Lu C, Ahmad S, Wei Y, Jin J, Zhu G, Yang F(2021)(2021).Highly Efficient Leaf Base Protoplast Isolation and Transient Expression Systems for Orchids and Other Important Monocot Crops. Frontiers in Plant Science 12, 626015..Frontiers in Plant Science, 12:626015-626015. [21]Sivanandhan G, Bae S, Sung C, Choi S, Lee G J, Lim YP(2021)(2021).Optimization of Protoplast Isolation from Leaf Mesophylls of Chinese Cabbage(Brassica rapa ssp. pekinensis) and Subsequent Transfection with a Binary Vector. Plants-Basel 10(12), 10122636..Plants-Basel, 10:10122636-10122636. [22]Sretenovic S, Pan C, Tang X, Zhang Y, Qi Y(2021).Rapid vector construction and assessment of BE3 and target-AID C to T base editing systems in rice protoplasts.Rice Genome Engineering and Gene Editing: Methods and Protocols, pp:95-113. [23]Tricoli MD, Debernardi MJ(2024)(2024).An efficient protoplast-based genome editing protocol for Vitis species. Horticulture Research 11(1), uhad266..Horticulture Research, 11:uhad266-uhad266. [24]Wang P, Pu Y, Abid MA, Kang L, Ye Y, Zhang M, Liang C, Wei Y, Zhang R, Meng Z(2022)(2022).A rapid and efficient method for isolation and transformation of cotton (Gossypium hirsutum) callus protoplast. International Journal of Molecular Sciences 23(15), 8368..International Journal of Molecular Sciences, 23:8368-8368. [25]Wang QL, Yu GR, Chen ZY, Han JL, Hu YF, Wang K(2021)(2021).Optimization of protoplast isolation, transformation and its application in sugarcane (Saccharum spontaneum L). The Crop Journal 9(1), 133?142..The Crop Journal, 9:133-142. [26]Wu JZ, Liu Q, Geng XS, Li KM, Luo LJ, Liu JP(2017)(2017).Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnology 17 (1), 1?8..BMC Biotechnology, 17:1-18. [27]Yeong YJ, Hun-Young L, Suk WK, Yoo SN, Pil JS(2021)(2021).Optimization of protoplast regeneration in the model plant Arabidopsis thaliana. Plant Methods 17(1), 1?16..Plant Methods, 17:1-16. [28]Yoo SD, Cho YH, Sheen J(2007)(2007).Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2(7), 1565?1572..Nature Protocols, 2:1565-1572. [29]Yu J, Tu L, Subburaj S, Bae S, Lee G(2021)(2021).Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant Cell Reports 40, 1037?1045..Plant Cell Reports, 40:1037-1045. [30]Zhang XL, Peng R, Tian XB, Guo YQ, Li XY, Liu XL, Xie Y, Li MZ, Xia H, Liang D(2024)(2024).Establishment of protoplasts isolation and transient transformation system for kiwifruit. Scientia Horticulturae 329, 113034..Scientia Horticulturae, 329:113034-113034. |
[1] | 张玉琴, 吴嘉诚, 何萌, 刘仁义, 朱晓玥. 铁观音原生质体高效瞬时转化方法的建立[J]. 植物学报, 2022, 57(3): 340-349. |
[2] | 胡添源, 王睿, 陈上, 马宝伟, 高伟, 黄璐琦. 雷公藤悬浮细胞原生质体的制备及瞬时转化体系的建立[J]. 植物学报, 2017, 52(6): 774-782. |
[3] | 宋爱华, 张文斌, 孙姝兰, 李凌飞, 王小菁. 非洲菊原生质体制备及瞬时转化系统的建立[J]. 植物学报, 2017, 52(4): 511-519. |
[4] | 张改娜;贾敬芬*. 草木樨状黄芪和木本霸王的科间体细胞杂交[J]. 植物学报, 2009, 44(04): 442-450. |
[5] | 聂志刚;王艳;李韶山. 重金属诱导拟南芥原生质体DNA 损伤的单细胞凝胶电泳检测[J]. 植物学报, 2009, 44(01): 117-123. |
[6] | 詹宝 徐文忠 麻密. 砷超富集植物蜈蚣草原生质体的分离及其抗砷性分析[J]. 植物学报, 2006, 23(4): 363-367. |
[7] | 刘凡 赵泓 秦帆. 结球白菜下胚轴原生质体培养及其体细胞胚植株再生[J]. 植物学报, 2006, 23(3): 275-280. |
[8] | 付春华 余龙江. 细胞融合与植物细胞质雄性不育性状改良[J]. 植物学报, 2005, 22(增刊): 99-107. |
[9] | 张国增 安国勇 宋纯鹏. 不同培养条件对拟南芥根细胞膜片钳记录的影响[J]. 植物学报, 2005, 22(01): 27-31. |
[10] | 李新奇 袁隆平 肖金华 邓启云. 植物细胞质雄性不育系育种的反向核置换技术分析[J]. 植物学报, 2004, 21(03): 257-262. |
[11] | 王晶珊 孙世孟 王维华 毕英娜 徐丽娟 孟祥霞. 甘薯同一不亲和群内品种间体细胞杂种[J]. 植物学报, 2004, 21(03): 306-311. |
[12] | 曹有龙 许兴 宋玉霞 曲玲 罗青. 枸杞原生质体培养及高效成株体系的建立[J]. 植物学报, 2001, 18(05): 605-614. |
[13] | 周军 颜长辉 陈浩明 戴尧仁. 用TUNEL法检测植物原生质体的凋亡[J]. 植物学报, 2000, 17(01): 87-89. |
[14] | 崔红 陈睦传. 甘薯生物技术研究进展[J]. 植物学报, 1999, 16(06): 653-657. |
[15] | 刘聪莉 张志芬 徐丽娟 孟祥霞 王晶珊. 甘薯叶柄原生质体有效植株再生[J]. 植物学报, 1999, 16(04): 420-424. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||