冯锦涛1†, 解松美1†, 王秉娇1, 汪承刚1, 2, 袁凌云1, 2, 侯金锋1, 2, 陈国户1, 2, 唐小燕1, 2, 王文杰1, 2, 吴建强1, 2*
1安徽农业大学园艺学院, 合肥 230036; 2安徽省皖江蔬菜产业技术研究院, 马鞍山 238200
收稿日期:
2025-04-01
修回日期:
2025-06-30
出版日期:
2025-07-21
发布日期:
2025-07-21
通讯作者:
吴建强
基金资助:
安徽省高等学校科学研究重点项目(No.2022AH050932)、安徽省重点研究和开发计划基础领域项目(No.2023z04020005)和安徽农业大学人才科研资助项目(No.rc322210)
Effects of Exogenous Thermospermine and Synthesis Inhibitor on Low-temperature Stress Tolerance of Wucai
Feng Jintao1†, Xie Songmei1†, Wang Bingjiao1, Wang Chenggang1, 2, Yuan Lingyun1, 2, Hou Jinfeng1, 2, Chen Guohu1, 2, Tang Xiaoyan1, 2, Wang Wenjie1, 2, Wu Jianqiang1, 2*
1College of Horticulture, Anhui Agricultural University, Hefei 230036; 2Anhui Wanjiang Vegetable Industrial Technology Institute, Ma’anshan 238200
Received:
2025-04-01
Revised:
2025-06-30
Online:
2025-07-21
Published:
2025-07-21
Contact:
Jian-Qiang WU
摘要: 本研究首先以低温敏感型的高代自交系乌菜材料舒W-1为试材, 进行不同浓度的外源热精胺处理, 发现与单独低温处理相比, 较低浓度的热精胺(0.05和0.1 mmol∙L–1)处理使电解质渗透率、过氧化氢、超氧阴离子和丙二醛含量不同程度地下降, 干鲜重增加, 而随着热精胺浓度的升高, 其作用减弱; 对测定指标进行隶属函数评价, 所得的平均隶属函数值排名顺序随着浓度的升高而逐渐下降, 0.05 mmol∙L–1热精胺平均隶属度得分最高, 说明0.05 mmol∙L–1热精胺能有效缓解低温对乌菜幼苗的伤害。为了进一步分析热精胺是否在乌菜抵御低温胁迫中发挥作用, 通过低温条件下施加热精胺合成抑制剂, 并结合筛选出的适宜浓度热精胺, 对2个低温耐性不同的乌菜高代自交系乌18 (耐低温型)和舒W-1 (低温敏感型)进行处理。结果表明, 与对照相比, 低温胁迫下2个材料的电解质渗透率和丙二醛含量均显著升高, 其中以舒W-1变化幅度更大, 受到的伤害更为严重, 验证了舒W-1为低温敏感型; 低温下添加热精胺合成抑制剂使2个材料均积累更多的过氧化氢和超氧阴离子, 电解质渗透率和丙二醛含量进一步增加, 但除电解质渗透率外, 其他3个指标在乌18中的变化幅度更大, 且超氧化物歧化酶(superoxide dismutase, SOD)和过氧化物酶(peroxidase, POD)活性显著降低; 同时施加热精胺可缓解由抑制剂处理加重的低温胁迫伤害, 说明热精胺与乌菜的低温胁迫耐性密切相关, 其可能通过维持较高的SOD和POD活性来提高低温耐性。
冯锦涛, 解松美, 王秉娇, 汪承刚, 袁凌云, 侯金锋, 陈国户, 唐小燕, 王文杰, 吴建强. 外源热精胺及其合成抑制剂对乌菜低温胁迫耐性的影响. 植物学报, DOI: 10.11983/CBB25051.
Feng Jintao, Xie Songmei, Wang Bingjiao, Wang Chenggang, Yuan Lingyun, Hou Jinfeng, Chen Guohu, Tang Xiaoyan, Wang Wenjie, Wu Jianqiang.
Effects of Exogenous Thermospermine and Synthesis Inhibitor on Low-temperature Stress Tolerance of Wucai. Chinese Bulletin of Botany, DOI: 10.11983/CBB25051.
[1]Alexieva V, Sergiev I, Mapelli S, Karanov E (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24(12): 1337-1344.[2]Chen DD, Shao QS, Yin LH, Younis A, Zheng BS (2018). Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Frontiers in Plant Science, 9: 1945.[3]Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil IT, Gubis J, Vanková R (2012). Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Science, 182: 49-58.[4]Du HY, Chen BX, Li Q, Liu HP, Kurtenbach R (2022). Conjugated polyamines in root plasma membrane enhanced the tolerance of plum seedling to osmotic stress by stabilizing membrane structure and therefore elevating H+-ATPase activity. Frontiers in Plant Science, 12: 812360.[5]Fan Junqiang, Lu Xiaoming, Wang Huiwen, Wu Junyan, Liu Lijun, Ma Li, Pu Yuanyuan, Li Xuecai, Sun Wancang (2023). Association between cold resistance and leaf hormone content of Brassica napus L. under low temperature stress. Jiangsu Journal of Agriculture Science, 39(1): 15-21. (in Chinese)范军强, 路晓明, 王会文, 武军艳, 刘丽君, 马骊, 蒲媛媛, 李学才, 孙万仓 (2023). 低温胁迫下甘蓝型冬油菜抗寒性与叶片激素含量的关联性. 江苏农业学报, 39(1): 15-21.[6]Farsodia M, Mavadiya P, Trivedi M, Tandel K, Vyas V, Singh SK (2023). Overexpression of tomato ACL5 gene in tobacco leads to increased plant growth and delayed the onset of leaf senescence. Journal of Plant Growth, 42(8): 4764-4783.[7]Gil-Mu?oz F, Delhomme N, Qui?ones A, Naval MD, Badenes ML, García-Gil MR (2020). Transcriptomic analysis reveals salt tolerance mechanisms present in date-plum persimmon rootstock (Diospyros lotus L.). Agronomy-Basel, 10(11): 1-19.[8]Guo Qihang (2020). Metabolic pathway of the difference of Vc content in different genotypes of Wucai [Master Dissertation]. Hefei: Anhui Agricultural University. (in Chinese)郭祺航 (2020). 不同基因型乌菜Vc含量差异的代谢途径研究[硕士论文]. 合肥: 安徽农业大学.[9]He Meiwen (2019). Identification of S-adenosylmethionine synthetase gene and its salt stress response function in cucumber [Doctor Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese)何美文 (2019). 黄瓜S-腺苷甲硫氨酸合成酶基因鉴定及其在响应盐胁迫中的功能[博士论文]. 南京: 南京农业大学. [10]Li Chunhong, Zhang Leigang, Luo Shufen, Zhou Hongsheng, Hu Huali, Shao Bin, Li Pengxia (2023). Study on induction effect of preharvest treatment with exogenous polyamines on production of endogenous polyamines and ethylene in Pleurotus eryngii. Acta Agriculturae Jiangxi, 35(3): 51-59. (in Chinese)黎春红, 张雷刚, 罗淑芬, 周宏胜, 胡花丽, 李鹏霞 (2023). 采前外源多胺预处理对杏鲍菇内源多胺及乙烯的诱导分析. 江西农业学报, 35(3): 51-59.[11]Li Xiuling, Fan Jizheng, Liao Hongying, He Jingzhou, Zeng Yanhua, Long Qiangyu, Bu Zhaoyang (2021). Dynamic changes of endogenous hormones and polyamine in Paphiopedilum hirsutissimum leaves during floral bud formation. Chinese Journal of Tropical Crops, 42(11): 3236-3241. (in Chinese)李秀玲, 范继征, 廖宏英, 何荆洲, 曾艳华, 龙蔷宇, 卜朝阳 (2021). 带叶兜兰成花过程中叶片内源激素与多胺含量的变化动态. 热带作物学报, 42(11): 3236-3241.[12]Li Xianfeng (2022). Functional analysis of OsACL5, a gene putatively encoding thermospermine synthase [ Master Dissertation]. Yangzhou: Yangzhou University. (in Chinese)李先锋 (2022). 水稻热精胺合成酶基因OsACL5的功能研究[硕士论文]. 扬州: 扬州大学.[13]Liebsch D, Juvany M, Li ZH, Wang HL, Ziolkowska A. Chrobok D, Boussardon C, Wen X, Law SR, Janecková H, Brouwer B, Lindén P , Delhomme N, Stenlund H, Moritz T, Gardestr?m P, Guo HW, Keech O (2022). Metabolic control of arginine and ornithine levels paces the progression of leaf senescence. Plant Physiology, 189(4): 1943-1960.[14]Liu Chang, Li Jiayin, Feng Guojun, Liu Dajun, Yan Zhishan, Yang Xiaoxu (2021). Effects of low temperature acclimation on endogenous polyamine content and expression of synthesis and decomposition genes in Phaseolus vulgaris. Northern Horticulture, 23: 30-37. (in Chinese)刘畅, 李佳荫, 冯国军, 刘大军,闫志山,杨晓旭 (2021). 低温驯化对菜豆内源多胺含量及其合成分解基因表达的影响. 北方园艺, 23: 30-37.[15]Liu Songhu, Zhang Haoshuang, Zhang Yuxue, Shen Jun, Zhu Qingsong (2024). Effects of exogenous EBR on seed germination and seedling growth of watermelon under NaCl stress. Northern Horticulture, 8: 1-12. (in Chinese)刘松虎, 张浩爽, 张玉雪, 李慧杰, 申君, 朱庆松 (2024). 外源EBR 对 NaCl 胁迫下西瓜种子萌发及幼苗生长的影响. 北方园艺, 8: 1-12.[16]Mai HF, Qin T, Wei H, Yu Z, Pang G, Liang ZM, Ni JS, Yang HS, Tang HY, Xiao LS, Liu HL, Liu TB (2023). Overexpression of OsACL5 triggers environmentally-dependent leaf rolling and reduces grain size in rice. Plant Biotechnology Journal, 22(4): 833-847.[17]Marina M, Sirera FV, Rambla JL (2013). Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava[J]. Journal of Experimental Botany, 64(5): 1393-1402.[18]Mo HJ, Wang XF, Zhang Y, Yang J, Ma ZY (2015). Cotton ACAULIS5 is involved in stem elongation and the plant defense response to Verticillium dahliae through thermospermine alteration. Plant Cell Reports, 34(11): 1975-1985.[19]Sagor GHM, Takahashi H, Niitsu M, Takahashi Y, Berberich T, Kusano T (2012). Exogenous thermospermine has an activity to induce a subset of the defense genes and restrict cucumber mosaic virus multiplication in Arabidopsis thaliana. Plant Cell Reports, 31(7): 1227-1232.[20]Shinohara S, Okamoto T, Motose H, Takahashi T (2019). Salt hypersensitivity is associated with excessive xylem development in a thermospermine-deficient mutant of Arabidopsis thaliana. Plant Journal, 100(2): 374-383.[21]Shu Sheng, Yuan Lingyun, Wang Changyi, Liu Tao, Fan Huaifu, Guo Shirong (2013). Research progress of plant growth regulation substances on improving stress resistance vegetable crops. Journal of Changjiang Vegetables, 6: 1-12. (in Chinese)束胜, 袁凌云, 王长义, 刘涛, 樊怀福, 郭世荣 (2013). 植物生长调节物质提高蔬菜作物抗逆性的研究进展. 长江蔬菜, 16: 1-12.[22]Sun Chao (2022). Anhui Wucai. Journal of Anhui Agricultural University (Social Science Edition), 31(3): 1-2. (in Chinese) 孙超 (2022). 乌青心黄菜叶皱,雪下味浓赛羊肉——安徽乌菜. 安徽农业大学学报(社会科学版), 31(3): 1-2.[23]Takano A, Kakehi J, Takahashi T (2012). Thermospermine is not a minor polyamine in the plant kingdom[J]. Plant and Cell Physiology, 53(4): 606-616.[24]Tian Wengang (2019). Preliminary study on the function of S-adenosylmethionine decarboxylase gene (GhSAMDC1) in cotton [Master Dissertation]. Shi He-zi: Shihezi University. (in Chinese)田文刚 (2019). 棉花S-腺苷甲硫氨酸脱羧酶基因(GhSAMDC1)功能的初步研究[硕士论文]. 石河子: 石河子大学.[25]Vuosku J, Karppinen K, Muilu-M?kel? R, Kusano T, Sagor GHM, Avia K, Alak?rpp? E, Kestil? J, Suokas M, Nickolov K, Hamberg L, Savolainen O, H?ggman H, Sarjala T (2018). Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants. Annals of Botany, 121(6): 1243-1256.[26]Wang CG, Zhang MY, Zhou JJ, Gao X, Zhu SD, Yuan LY, Hou XL, Liu TK, Chen GH, Tang XY, Shan G, Hou, J (2022). Transcriptome analysis and differential gene expression profiling of wucai (Brassica campestris L.) in response to cold stress. BMC Genomics, 23(1): 137.[27]Wang Xuemei (2023). Effects of 5-aminolevulinic acid on spinach salt and temperature stress [Master Dissertation]. Shanghai: Shanghai Normal University. (in Chinese)王雪美 (2023). 5-氨基乙酰丙酸在菠菜盐和温度胁迫中的作用[硕士论文]. 上海: 上海师范大学.[28]Wang Wenjuan, Shi Shang-li, He Long, Wu Bei, Liu Chanchan (2023). Accumulation and functions of polyamines in plants under drought stress. Acta Prataculturae Sinica, 32(06): 186-202. (in Chinese)王文娟, 师尚礼, 何龙, 武蓓, 刘旵旵 (2023). 干旱胁迫下多胺在植物体内的积累及其作用. 草业学报, 32(06): 186-202.[29]Wang Y, Gong XW, Liu WK, Kong Lei, Si XY, Guo SR, Sun J (2020). Gibberellin mediates spermidine-induced salt tolerance and the expression of GT-3b in cucumber. Plant Physiology and Biochemistry, 152: 147-156.[30]Wei Xiaokai, Luo Xiaobing, Zhao Jie, Yao Zhonghu (2024). Alleviating Effect of exogenous betaine on drought stress in flue-cured tobacco seedlings. Journal of Shanxi Agricultural Sciences, 52(1): 79-85. (in Chinese)魏晓凯, 罗小兵, 赵杰, 姚忠虎 (2024). 外源甜菜碱对烤烟幼苗干旱胁迫的缓解效应. 山西农业科学, 52(1): 79-85.[31]Wu JQ, Liu WK, Jahan MS, Shu S, Sun J, Guo SR (2022). Characterization of polyamine oxidase genes in cucumber and roles of CsPAO3 in response to salt stress. Environmental and Experimental Botany, 194: 104696.[32]Xu Y, Burgess P, Zhang X, Huang BR (2016). Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. Journal of Experimental Botany, 67(6): 1979-1992.[33]Xu Yaozhao (2020). The physiological and molecular mechanisms of winterturnip rape (Brassica rapa L.) responses to cold stress [Ph.D.Dissertation]. Lanzhou: Gansu Agricultural University. (in Chinese)许耀照 (2020). 白菜型冬油菜抗寒生理基础及分子机理研究[博士论文]. 兰州: 甘肃农业大学.[34]Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den XP, Zhang SQ (2016). Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant, Cell & Environment, 39: 245–258.[35]Yoshimoto K, Takamura H, Kadota I, Motose H, Takahashi T (2016). Chemical control of xylem differentiation by thermospermine, xylemin, and auxin. Scientific Reports, 6: 21487.[36]Yuan Zhouyu, Zhang Jianting, Liu Longbo, Zhang Liuzi, Gan Xing, Zhong Yan, Wang Liangju (2024). ALA up-regulated PpWRKY18 to enhance freezing tolerance of nectarine pistils. Horticultural Plant Journal, in press.[37]Zarza X, Atanasov KE, Marco F, Arbona V, Carrasco P, Kopka J, Fotopoulos V, Munnik T, Gómez-Cadenas A, Tiburcio AF, Alcázar R (2017). Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant, Cell & Environment, 40(4): 527-542.[38]Zhu Peipei, Qin Haoxiang, Zhang Jianxia (2023). Changes of endogenous hormones and polyamines during ovule development of stenospermocarpic seedless grape. Scientia Agricultura Sinica, 56(23): 4789-4800.(in Chinese)朱佩佩, 秦浩翔, 张剑侠 (2023). 无核葡萄胚珠发育过程中内源激素及多胺含量的变化. 中国农业科学, 56(23): 4789-4800. |
[1] | 欧阳子龙, 贾湘璐, 石景忠, 滕维超, 刘秀. 生长调节剂对低温胁迫及复温下红海榄幼苗光合特性的影响[J]. 植物生态学报, 2025, 49(4): 638-652. |
[2] | 樊蓓, 任敏, 王延峰, 党峰峰, 陈国梁, 程国亭, 杨金雨, 孙会茹. 番茄SlWRKY45转录因子在响应低温和干旱胁迫中的功能(长英文摘要)[J]. 植物学报, 2025, 60(2): 186-203. |
[3] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[4] | 杨小青,黄晓琴,韩晓阳,刘腾飞,岳晓伟,伊冉. 外源物质对茶树耐寒及蔗糖代谢关键基因表达的影响[J]. 植物学报, 2020, 55(1): 21-30. |
[5] | 刘静妍, 施怡婷, 杨淑华. CBF: 平衡植物低温应答与生长发育的关键[J]. 植物学报, 2017, 52(6): 689-698. |
[6] | 孙鲁龙, 耿庆伟, 邢浩, 杜远鹏, 翟衡. 低温处理葡萄根系对叶片PSII活性的影响[J]. 植物学报, 2017, 52(2): 159-166. |
[7] | 武辉, 戴海芳, 张巨松, 焦晓玲, 刘翠, 石俊毅, 范志超, 阿丽艳·肉孜. 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应[J]. 植物生态学报, 2014, 38(10): 1124-1134. |
[8] | 刘滨扬, 刘蔚秋, 张以顺, 雷纯义. 低温胁迫后苔藓植物对模拟氮沉降条件的生理响应[J]. 植物生态学报, 2011, 35(3): 268-274. |
[9] | 张国增;白玲;宋纯鹏. 低温胁迫下拟南芥CBF1 超表达突变体胞质中Ca2+ 浓度的变化[J]. 植物学报, 2009, 44(03): 283-289. |
[10] | 代玉华 刘训言 孟庆伟 赵世杰. 低温胁迫对类囊体膜脂代谢的影响[J]. 植物学报, 2004, 21(04): 506-511. |
[11] | 晏婴才 林宏辉 梁厚果 张年辉. 不同低温胁迫对烟草愈伤组织抗氰交替途径诱导和交替氧化酶表达影响的比较[J]. 植物学报, 2004, 21(03): 296-305. |
[12] | 谢潮添 杨盛昌 廖启炓丁印龙 陈文列. 低温胁迫下董棕(Garyota urens L.)幼苗叶肉细胞内Ca2+水平及细胞超微结构的变化[J]. 植物学报, 2003, 20(02): 212-217. |
[13] | 张燕 方力 李天飞 姚照兵 冯永新 吴业池. 钙对低温胁迫的烟草幼苗某些酶活性的影响[J]. 植物学报, 2002, 19(03): 342-347. |
[14] | 刘峰 张军 张文吉. 氧化钙对水稻幼苗的生理作用研究[J]. 植物学报, 2001, 18(04): 490-495. |
[15] | 卢存福, 贲桂英, 韩发, 师生波. 矮嵩草光合作用与环境因素关系的比较研究[J]. 植物生态学报, 1995, 19(1): 72-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||