植物学报 ›› 2022, Vol. 57 ›› Issue (5): 611-622.DOI: 10.11983/CBB22046
收稿日期:
2022-03-10
接受日期:
2022-05-30
出版日期:
2022-09-01
发布日期:
2022-09-09
通讯作者:
苑泽宁
作者简介:
*E-mail: xiaoyuan168ok@163.com基金资助:
Lin Haijiao, Qu Jiaqi, Liu Yinan, Yuan Zening*()
Received:
2022-03-10
Accepted:
2022-05-30
Online:
2022-09-01
Published:
2022-09-09
Contact:
Yuan Zening
About author:
*E-mail: xiaoyuan168ok@163.com摘要: 薰衣草(Lavandula angustifolia)作为名贵的芳香植物, 其生长、繁育、品质和产量均受低温影响。前期研究已获得1个耐低温薰衣草品种。该研究将对其处理的温度从20°C降至0°C, 揭示薰衣草响应冷胁迫的生理及分子调控机制, 同时结合薰衣草的细胞质膜透性、可溶性糖和蛋白质含量及抗氧化酶活性等生理变化。采用转录组学和生物信息学方法挖掘分析相关耐寒基因, 并探讨外施水杨酸缓解-10°C冻胁迫的可行性。研究发现7个编码脂肪酸去饱和酶和转移酶的基因(LaFADs)、3个参与合成可溶性糖的基因(LaBAM1和LaSS2)、19个编码胚胎晚期丰富蛋白的基因(LaLEAs)及7个编码过氧化物酶的基因(LaPODs), 这些基因在低温胁迫下均上调表达, 指导薰衣草合成并积累保护物质, 维持膜稳定性以应对胁迫。此外, 150 mg·L-1水杨酸预处理能有效缓解植株冻害, 可作为低温保护剂。该研究丰富了薰衣草重要抗逆基因家族的遗传背景, 为后续分子遗传学功能分析和定向品种改良奠定基础。
蔺海娇, 曲嘉琪, 刘祎男, 苑泽宁. 薰衣草叶片对低温胁迫的生理与分子响应机制. 植物学报, 2022, 57(5): 611-622.
Lin Haijiao, Qu Jiaqi, Liu Yinan, Yuan Zening. Physiological and Molecular Response Mechanisms Under Low-temperature Stress in Lavandula angustifolia Leaves. Chinese Bulletin of Botany, 2022, 57(5): 611-622.
Gene ID | Gene name | Primer sequence (5′-3′) | |
---|---|---|---|
DN12834_c2_g2 | LaLEA1 | F: CCAAGGCAATCTCTGCTCTCA | R: CTTTGGATCCGGAGCCTTTCT |
DN11187_c0_g4 | LaLEA2 | F: TCTACGTCTTCATCTTCGCCG | R: GCGTTGTAGTTTGCCAGAGTG |
DN10094_c0_g1 | LaERD10 | F: ATATGACGACGCACCGACTG | R: TCCGGTGCGTAATCCGAATC |
DN14123_c1_g1 | LaFAB2 | F: CGACTTTTGTCTCCCACGGA | R: TGTCCCATCTGGGTCGATCT |
DN16955_c0_g1 | LaPOD2 | F: CATGGACTATGTCACGCCGA | R: GCTCGAAGAAAGCAATGGCA |
DN18853_c0_g2 | LaBAM1 | F: CCCACGGCGAGAGAATTGTA | R: TTTGAGCGATGGGGACGTAG |
GADPH | F: TAGGAGGTGGCAGGACATCA | R: CCCTTTACCCGTCACGTTGT |
表1 qRT-PCR反应所用引物
Table 1 Primers used for qRT-PCR
Gene ID | Gene name | Primer sequence (5′-3′) | |
---|---|---|---|
DN12834_c2_g2 | LaLEA1 | F: CCAAGGCAATCTCTGCTCTCA | R: CTTTGGATCCGGAGCCTTTCT |
DN11187_c0_g4 | LaLEA2 | F: TCTACGTCTTCATCTTCGCCG | R: GCGTTGTAGTTTGCCAGAGTG |
DN10094_c0_g1 | LaERD10 | F: ATATGACGACGCACCGACTG | R: TCCGGTGCGTAATCCGAATC |
DN14123_c1_g1 | LaFAB2 | F: CGACTTTTGTCTCCCACGGA | R: TGTCCCATCTGGGTCGATCT |
DN16955_c0_g1 | LaPOD2 | F: CATGGACTATGTCACGCCGA | R: GCTCGAAGAAAGCAATGGCA |
DN18853_c0_g2 | LaBAM1 | F: CCCACGGCGAGAGAATTGTA | R: TTTGAGCGATGGGGACGTAG |
GADPH | F: TAGGAGGTGGCAGGACATCA | R: CCCTTTACCCGTCACGTTGT |
Levels of chilling injury | Standard of judgment |
---|---|
1 | Leaf present green and there are no symptoms of chilling injury |
2 | Only the edge of the leaf is yellow |
3 | Leaf withered and yellow part of < 50%, the green part is more |
4 | 50%-100% of the leaf is dry and yellow, with less green |
5 | The whole plant is wilting |
6 | The aboveground parts dried up and died |
表2 植物冷害的症状分级
Table 2 Symptoms grading of plant chilling injury
Levels of chilling injury | Standard of judgment |
---|---|
1 | Leaf present green and there are no symptoms of chilling injury |
2 | Only the edge of the leaf is yellow |
3 | Leaf withered and yellow part of < 50%, the green part is more |
4 | 50%-100% of the leaf is dry and yellow, with less green |
5 | The whole plant is wilting |
6 | The aboveground parts dried up and died |
Database | Number of annotated unigene | Percentage of annotated unigene (%) |
---|---|---|
NT | 32797 | 42.73 |
NR | 48554 | 63.26 |
Uniprot (BLASTX) | 37801 | 49.25 |
Uniprot (BLASTP) | 25631 | 33.39 |
PFAM | 22340 | 29.11 |
eggNOG | 28488 | 37.12 |
GO | 24430 | 31.83 |
KEGG | 15496 | 20.19 |
KOG | 28787 | 37.51 |
表3 基因功能注释结果统计
Table 3 The statistical result of unigene functional annotation
Database | Number of annotated unigene | Percentage of annotated unigene (%) |
---|---|---|
NT | 32797 | 42.73 |
NR | 48554 | 63.26 |
Uniprot (BLASTX) | 37801 | 49.25 |
Uniprot (BLASTP) | 25631 | 33.39 |
PFAM | 22340 | 29.11 |
eggNOG | 28488 | 37.12 |
GO | 24430 | 31.83 |
KEGG | 15496 | 20.19 |
KOG | 28787 | 37.51 |
图2 低温胁迫下薰衣草叶片DEGs的GO与KEGG富集情况(0°C vs 20°C) BP: 生物学过程; MF: 分子功能; CC: 细胞组分
Figure 2 GO and KEGG enrichment of DEGs in Lavandula angustifolia leaves under low-temperature stress (0°C vs 20°C) BP: Biological process; MF: Molecular function; CC: Cellular component
图3 薰衣草膜稳定性相关耐寒基因表达的变化及编码蛋白的互作关系 (A) 基因表达的变化(0°C vs 20°C); (B) 蛋白网络互作。FPKM: 每千个碱基的转录每百万映射读取的片段
Figure 3 Changes in expression of cold tolerance genes related to membrane stability of Lavandula angustifolia and the interaction network of these encoding proteins (A) Gene expression changes (0°C vs 20°C); (B) Protein interaction network. FPKM: Fragments per kilobase per million mapped fragments
图4 薰衣草与近缘物种LEA的进化树和保守基序分布(A)及seq LOGO (B)
Figure 4 The phylogenetic tree, conservative motif distribution (A) and seq LOGO (B) of LEA proteins in Lavandula angustifolia and related species
Gene ID | Gene name | Number of amino acids (aa) | Molecular weight (kDa) | Theoretical pI | Grand average of hydropathicity (GRAVY) | Aliphatic index | Instability index | Subcellular localization |
---|---|---|---|---|---|---|---|---|
DN12834_c2_g2 | LaLEA1 | 100 | 10.90 | 10.32 | -0.484 | 73.40 | 52.96 | - |
DN11187_c0_g4 | LaLEA2 | 128 | 14.16 | 10.09 | -0.088 | 74.77 | 22.26 | Chloroplasts |
DN13720_c1_g4 | LaLEA3 | 264 | 28.68 | 5.12 | -0.933 | 59.73 | 14.27 | Chloroplasts |
DN9448_c0_g7 | LaLEA4 | 193 | 21.28 | 10.13 | 0.123 | 92.49 | 43.01 | Chloroplasts |
DN10042_c1_g5 | LaLEA5 | 176 | 19.78 | 10.52 | -0.463 | 83.01 | 34.04 | Chloroplasts |
DN20068_c2_g4 | LaLEA6 | 122 | 13.28 | 10.07 | -0.204 | 71.15 | 35.17 | - |
DN13618_c0_g1 | LaLEA7 | 120 | 13.63 | 9.68 | -0.299 | 61.08 | 16.35 | Nucleus |
DN7134_c0_g1 | LaLEA8 | 208 | 22.93 | 9.97 | -0.062 | 92.74 | 28.05 | - |
DN16104_c0_g1 | LaLEA9 | 219 | 24.60 | 9.97 | -0.357 | 72.19 | 41.89 | - |
DN9448_c0_g2 | LaLEA10 | 132 | 14.84 | 10.06 | -0.475 | 67.42 | 24.52 | - |
DN19299_c2_g2 | LaLEA11 | 320 | 35.11 | 9.63 | -0.674 | 55.44 | 89.14 | - |
DN11058_c1_g6 | LaLEA12 | 124 | 13.00 | 8.83 | -1.085 | 41.94 | 29.73 | Mitochondrial |
DN17935_c0_g1 | LaLEA13 | 228 | 25.24 | 10.37 | -0.224 | 89.74 | 42.60 | - |
DN5364_c0_g1 | LaLEA14 | 229 | 25.76 | 9.85 | -0.035 | 90.66 | 40.29 | - |
DN13618_c0_g3 | LaLEA15 | 134 | 14.75 | 10.01 | -0.440 | 64.03 | 24.39 | - |
DN24875_c0_g1 | LaLEA16 | 121 | 12.51 | 8.78 | -1.135 | 31.98 | 32.24 | Nucleus |
DN9962_c0_g1 | LaLEA17 | 225 | 24.75 | 9.69 | -0.036 | 98.67 | 35.53 | Cytoplasm |
DN10042_c1_g1 | LaLEA18 | 203 | 22.61 | 10.07 | -0.226 | 95.02 | 30.10 | - |
DN11740_c4_g1 | LaLEA19 | 133 | 13.80 | 4.64 | -0.514 | 72.56 | 19.99 | Chloroplasts |
DN11740_c4_g1 | LaLEA20 | 356 | 37.92 | 5.88 | -1.015 | 52.16 | 17.85 | Chloroplasts |
DN4252_c0_g1 | LaLEA21 | 259 | 26.30 | 4.89 | -0.167 | 82.43 | 30.36 | Cytoplasm |
DN6726_c0_g1 | LaLEA22 | 204 | 22.22 | 10.42 | -0.135 | 88.97 | 40.07 | - |
DN10094_c0_g1 | LaERD10 | 155 | 17.51 | 5.79 | -1.632 | 45.94 | 48.98 | - |
表4 薰衣草LaLEAs家族的理化信息
Table 4 Physical and chemical information of LaLEAs of Lavandula angustifolia
Gene ID | Gene name | Number of amino acids (aa) | Molecular weight (kDa) | Theoretical pI | Grand average of hydropathicity (GRAVY) | Aliphatic index | Instability index | Subcellular localization |
---|---|---|---|---|---|---|---|---|
DN12834_c2_g2 | LaLEA1 | 100 | 10.90 | 10.32 | -0.484 | 73.40 | 52.96 | - |
DN11187_c0_g4 | LaLEA2 | 128 | 14.16 | 10.09 | -0.088 | 74.77 | 22.26 | Chloroplasts |
DN13720_c1_g4 | LaLEA3 | 264 | 28.68 | 5.12 | -0.933 | 59.73 | 14.27 | Chloroplasts |
DN9448_c0_g7 | LaLEA4 | 193 | 21.28 | 10.13 | 0.123 | 92.49 | 43.01 | Chloroplasts |
DN10042_c1_g5 | LaLEA5 | 176 | 19.78 | 10.52 | -0.463 | 83.01 | 34.04 | Chloroplasts |
DN20068_c2_g4 | LaLEA6 | 122 | 13.28 | 10.07 | -0.204 | 71.15 | 35.17 | - |
DN13618_c0_g1 | LaLEA7 | 120 | 13.63 | 9.68 | -0.299 | 61.08 | 16.35 | Nucleus |
DN7134_c0_g1 | LaLEA8 | 208 | 22.93 | 9.97 | -0.062 | 92.74 | 28.05 | - |
DN16104_c0_g1 | LaLEA9 | 219 | 24.60 | 9.97 | -0.357 | 72.19 | 41.89 | - |
DN9448_c0_g2 | LaLEA10 | 132 | 14.84 | 10.06 | -0.475 | 67.42 | 24.52 | - |
DN19299_c2_g2 | LaLEA11 | 320 | 35.11 | 9.63 | -0.674 | 55.44 | 89.14 | - |
DN11058_c1_g6 | LaLEA12 | 124 | 13.00 | 8.83 | -1.085 | 41.94 | 29.73 | Mitochondrial |
DN17935_c0_g1 | LaLEA13 | 228 | 25.24 | 10.37 | -0.224 | 89.74 | 42.60 | - |
DN5364_c0_g1 | LaLEA14 | 229 | 25.76 | 9.85 | -0.035 | 90.66 | 40.29 | - |
DN13618_c0_g3 | LaLEA15 | 134 | 14.75 | 10.01 | -0.440 | 64.03 | 24.39 | - |
DN24875_c0_g1 | LaLEA16 | 121 | 12.51 | 8.78 | -1.135 | 31.98 | 32.24 | Nucleus |
DN9962_c0_g1 | LaLEA17 | 225 | 24.75 | 9.69 | -0.036 | 98.67 | 35.53 | Cytoplasm |
DN10042_c1_g1 | LaLEA18 | 203 | 22.61 | 10.07 | -0.226 | 95.02 | 30.10 | - |
DN11740_c4_g1 | LaLEA19 | 133 | 13.80 | 4.64 | -0.514 | 72.56 | 19.99 | Chloroplasts |
DN11740_c4_g1 | LaLEA20 | 356 | 37.92 | 5.88 | -1.015 | 52.16 | 17.85 | Chloroplasts |
DN4252_c0_g1 | LaLEA21 | 259 | 26.30 | 4.89 | -0.167 | 82.43 | 30.36 | Cytoplasm |
DN6726_c0_g1 | LaLEA22 | 204 | 22.22 | 10.42 | -0.135 | 88.97 | 40.07 | - |
DN10094_c0_g1 | LaERD10 | 155 | 17.51 | 5.79 | -1.632 | 45.94 | 48.98 | - |
图5 20°C与0°C下薰衣草中编码可溶性糖和蛋白合成基因的聚类图
Figure 5 Cluster diagram of genes encoding soluble sugar and protein synthesis in Lavandula angustifolia under 20°C and 0°C
图6 薰衣草与其近缘物种的进化树及其LaPODs在低温胁迫下的表达变化(0°C vs 20°C)
Figure 6 The evolutionary tree of Lavandula angustifolia and it’s relative species, and LaPODs expression changes under low-temperature stress (0°C vs 20°C)
图8 在冷害与冻害条件下薰衣草叶片的生理变化(A-E)及水杨酸(SA)对冻害的缓解效果(F) MDA: 丙二醛; SS: 可溶性糖; SP: 可溶性蛋白; POD: 过氧化物酶。不同小写字母表示不同处理间差异显著(P<0.05)。
Figure 8 Physiological changes of Lavandula angustifolia leaves under chilling and freezing conditions (A-E) and alleviation of freezing injury by salicylic acid (SA) (F) MDA: Malondialdehyde; SS: Soluble sugars; SP: Soluble proteins; POD: Peroxidase. Different lowercase letters indicate significant differences among different treatments (P<0.05).
图9 薰衣草叶片响应低温并提高耐寒性途径示意图
Figure 9 Schematic diagram of the way that Lavandula angustifolia leaves respond to low temperature and improve cold tolerance
[1] | 陈建权, 程晨, 张梦恬, 张向前, 张尧, 王爱英, 祝建波 (2018). 天山雪莲SiSAD基因与拟南芥AtFAB2基因转化烟草的抗寒性分析. 植物学报 53, 603-611. |
[2] | 代宇佳, 罗晓峰, 周文冠, 陈锋, 帅海威, 杨文钰, 舒凯 (2019). 生物和非生物逆境胁迫下的植物系统信号. 植物学报 54, 255-264. |
[3] | 段志坤, 秦晓惠, 朱晓红, 宋纯鹏 (2018). 解析植物冷信号转导途径: 植物如何感知低温. 植物学报 53, 149-153. |
[4] | 何子华, 杨成行, 王沛, 包爱科, 马清 (2021). 高寒地区6种禾本科牧草对低温胁迫的生理响应及耐寒性评价. 草业科学 38, 2019-2028. |
[5] | 李瑞雪, 金晓玲, 胡希军, 汪结明, 罗峰, 张方静 (2019). 低温胁迫下6种木兰科植物的生理响应及抗寒相关基因差异表达. 生态学报 39, 2883-2898. |
[6] | 王笑, 蔡剑, 周琴, 戴廷波, 姜东 (2021). 非生物逆境锻炼提高作物耐逆性的生理机制研究进展. 中国农业科学 54, 2287-2301. |
[7] | 张超 (2018). 大豆FAD3基因的克隆及其功能验证. 硕士论文. 长春: 吉林大学. pp. 41-42. |
[8] | Al-Ansari MM, Andeejani AMI, Alnahmi E, AlMalki RH, Masood A, Vijayaraghavan P, Rahman AA, Choi KC (2021). Insecticidal, antimicrobial and antioxidant activities of essential oil from Lavandula latifolia L. and its deterrent effects on Euphoria leucographa. Ind Crops Prod 170, 113740. |
[9] | Barrero-Gil J, Salinas J (2018). Gene regulatory networks mediating cold acclimation: the CBF pathway. In: Iwaya- Inoue M, Sakurai M, Uemura M, eds. Survival Strategies in Extreme Cold and Desiccation. Singapore: Springer. pp. 3-22. |
[10] | Chinnusamy V, Zhu JK (2009). Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12, 133-139. |
[11] | Chrysargyris A, Laoutari S, Litskas VD, Stavrinides MC, Tzortzakis N (2016). Effects of water stress on lavender and sage biomass production, essential oil composition and biocidal properties against Tetranychus urticae (Koch). Sci Hortic 213, 96-103. |
[12] | Chrysargyris A, Michailidi E, Tzortzakis N (2018). Physiological and biochemical responses of Lavandula angustifolia to salinity under mineral foliar application. Front Plant Sci 9, 489. |
[13] | Ding YL, Shi YT, Yang SH (2019). Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222, 1690-1704. |
[14] | Ding YL, Shi YT, Yang SH (2020). Molecular regulation of plant responses to environmental temperatures. Mol Plant 13, 544-564. |
[15] | Du B, Rennenberg H (2018). Physiological responses of lavender (Lavandula angustifolia Mill.) to water deficit and recovery. S Afr J Bot 119, 212-218. |
[16] | Duan XJ, Zhu ZL, Yang Y, Duan J, Jia ZK, Chen FJ, Sang ZY, Ma LY (2022). Salicylic acid regulates sugar metabolism that confers freezing tolerance in Magnolia wufengensis during natural cold acclimation. J Plant Growth Regul 41, 227-235. |
[17] | Golizadeh F, Kumleh HH (2019). Physiological responses and expression changes of fatty acid metabolism-related genes in wheat (Triticum aestivum) under cold stress. Plant Mol Biol Rep 37, 224-236. |
[18] | Guo XY, Liu DF, Chong K (2018). Cold signaling in plants: insights into mechanisms and regulation. J Integr Plant Biol 60, 745-756. |
[19] | Guy CL, Niemi KJ, Brambl R (1985). Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA 82, 3673-3677. |
[20] | Ignatenko A, Talanova V, Repkina N, Titov A (2019). Exogenous salicylic acid treatment induces cold tolerance in wheat through promotion of antioxidant enzyme activity and proline accumulation. Acta Physiol Plant 41, 80. |
[21] | John R, Anjum NA, Sopory SK, Akram NA, Ashraf M (2016). Some key physiological and molecular processes of cold acclimation. Biol Plant 60, 603-618. |
[22] | Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T (2008). Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot 59, 2043-2056. |
[23] | Li JR, Wang YM, Dong YM, Zhang WY, Wang D, Bai HT, Li K, Li H, Shi L (2021). The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis. Hortic Res 8, 90. |
[24] | Li XT, Liu P, Yang PP, Fan CZ, Sun XM (2018). Characterization of the glycerol-3-phosphate acyltransferase gene and its real-time expression under cold stress in Paeonia lactiflora Pall. PLoS One 13, e0202168. |
[25] | Liu J, Li JM, Fu CX (2021). Comparative physiology and transcriptome analysis reveals the regulatory mechanism of genome duplication enhancing cold resistance in Fragaria nilgerrensis. Environ Exp Bot 188, 104509. |
[26] | Liu JY, Shi YT, Yang SH (2018). Insights into the regulation of C-repeat binding factors in plant cold signaling. J Integr Plant Biol 60, 780-795. |
[27] | Paraskevopoulou AT, Tsarouchas P, Londra PA, Kamoutsis AP (2020). The effect of irrigation treatment on the growth of lavender species in an extensive green roof system. Water 12, 863. |
[28] | Pedrosa AM, de Paula Santos Martins C, Gonçalves LP, Costa MGC (2015). Late embryogenesis abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb.). PLoS One 10, e0145785. |
[29] | Peng YJ, Yang JF, Li X, Zhang YL (2021). Salicylic acid: biosynthesis and signaling. Annu Rev Plant Biol 72, 761-791. |
[30] | Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996). Systemic acquired resistance. Plant Cell 8, 1809-1819. |
[31] | Shi HF, He XY, Zhao YJ, Lu SY, Guo ZF (2020). Constitutive expression of a group 3 LEA protein from Medicago falcata (MfLEA3) increases cold and drought tolerance in transgenic tobacco. Plant Cell Rep 39, 851-860. |
[32] | Szekely-Varga Z, González-Orenga S, Cantor M, Jucan D, Boscaiu M, Vicente O (2020). Effects of drought and salinity on two commercial varieties of Lavandula angustifolia Mill. Plants 9, 637. |
[33] | Wang WL, Wang X, Huang M, Cai J, Zhou Q, Dai TB, Cao WX, Jiang D (2018). Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Front Plant Sci 9, 1137. |
[34] | Wang X, Yu C, Liu Y, Yang L, Li Y, Yao W, Cai YC, Yan X, Li SB, Cai YH, Li SQ, Peng XJ (2019). GmFAD3A, A ω-3 fatty acid desaturase gene, enhances cold tolerance and seed germination rate under low temperature in rice. Int J Mol Sci 20, 3796. |
[35] | Wang Y, Li Y, Wang JH, Xiang Z, Xi PY, Zhao DG (2021). Physiological changes and differential gene expression of tea plants (Camellia sinensis (L.) Kuntze var. niaowangensis Q. H. Chen) under cold stress. DNA Cell Biol 40, 906-920. |
[36] | Wu QY, He TJ, Liu H, Luo XB, Yin W, Chen EF, Li F (2019). Cell ultrastructure and physiological changes of potato during cold acclimation. Can J Plant Sci 99, 873-884. |
[37] | Xu ML, Tong Q, Wang Y, Wang ZM, Xu GZ, Elias GK, Li SH, Liang ZC (2020). Transcriptomic analysis of the grapevine LEA gene family in response to osmotic and cold stress reveals a key role for VamDHN3. Plant Cell Physiol 61, 775-786. |
[38] | Xu XX, Yan BW, Zhao Y, Wang F, Zhao XC, He L, Xu JY, Zhao CJ (2019). Characterization and expression analysis of GPAT gene family in maize. Can J Plant Sci 99, 577-588. |
[39] | Yue C, Cao HL, Wang L, Zhou YH, Huang YT, Hao XY, Wang YC, Wang B, Yang YJ, Wang XC (2015). Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Mol Biol 88, 591-608. |
[40] | Zhang ZL, Liu ZH, Song HN, Chen MH, Cheng SP (2019). Protective role of leaf variegation in Pittosporum tobira under low temperature: insights into the physio-biochemical and molecular mechanisms. Int J Mol Sci 20, 4857. |
[41] | Zhou Y, Zeng LT, Fu XM, Mei X, Cheng SH, Liao YY, Deng RF, Xu XL, Jiang YM, Duan XW, Susanne B, Yang ZY (2016). The sphingolipid biosynthetic enzyme Sphingolipid delta8 desaturase is important for chilling resistance of tomato. Sci Rep 6, 38742. |
[1] | 孙鲁龙, 耿庆伟, 邢浩, 杜远鹏, 翟衡. 根区缓冲降温处理对葡萄叶片冻害的影响[J]. 植物学报, 2017, 52(3): 290-296. |
[2] | 朱俊杰, 曹坤芳. 元江干热河谷毛枝青冈和三叶漆抗氧化系统季节变化[J]. 植物生态学报, 2008, 32(5): 985-993. |
[3] | 逯明辉;娄群峰;陈劲枫. 黄瓜的冷害及耐冷性[J]. 植物学报, 2004, 21(05): 578-586. |
[4] | 康国章 王正询 孙谷畴. 植物的冷调节蛋白[J]. 植物学报, 2002, 19(02): 239-246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||