植物学报 ›› 2023, Vol. 58 ›› Issue (2): 285-297.DOI: 10.11983/CBB22034
收稿日期:
2022-02-23
接受日期:
2022-09-07
出版日期:
2023-03-01
发布日期:
2023-03-15
通讯作者:
*E-mail: 基金资助:
Received:
2022-02-23
Accepted:
2022-09-07
Online:
2023-03-01
Published:
2023-03-15
Contact:
*E-mail: 摘要: 提取完整植物细胞核是流式细胞术检测前处理的关键步骤。分别以不同种属植物的新鲜叶片和大量硅胶快速干燥的植物叶片为研究材料, 比较新优化的细胞核提取液PVPK12-mGB2与其它2种常见提取液(LB01和CyStain® PI Absolute P)的提取效果。结果表明, 新优化的PVPK12-mGB2细胞核提取液在测试多种富含干扰性次生代谢物的植物类群新鲜材料时效果最佳, 提取的细胞核质量基本能满足流式细胞术分析的要求。此外, 实验结果证实该细胞核提取液能够提升大量硅胶快速干燥保存植物材料的提取效果, 测试结果明显优于其它2种细胞核提取液。研究建立了用于DNA流式细胞术的植物样品前处理方法, 为野外采样分析提供了参考方法。
张晋丹, 冯旻. 一种提升流式细胞术分析效果的前处理方法. 植物学报, 2023, 58(2): 285-297.
Jindan Zhang, Min Feng. A Plant Sample Optimal Pretreatment for Flow Cytometric Analysis. Chinese Bulletin of Botany, 2023, 58(2): 285-297.
图1 在大豆叶片细胞核悬液中添加不同浓度单宁后的DNA相对含量直方图 用不同细胞核提取液分别制备大豆叶片细胞核悬液, 添加不同浓度单宁, 冰上处理15分钟, 经碘化丙啶(PI)染色后, 用流式细胞仪检测细胞核DNA的相对含量。(A)-(D) PVPK12-mGB2 (含1% PVPK12); (E)-(H) PVPK17-mGB2; (I)-(L) PVPK30-mGB2; (M)-(P) PVPK12-mGB2 (含2% PVPK12); (Q)-(T) WPB。PI-A: PI-面积
Figure1 Histograms of relative nuclear DNA content in soybean leaves nuclear suspensions treated with different concentration of tannic acid (TA) Samples were prepared with different isolation buffers adding different concentrations of tannic acid, and treated on ice for 15 min. After stained with Propidium Iodide (PI), relative nuclear DNA content of samples were measured with a LSRFortessa flow cytometer. (A)-(D) PVPK12-mGB2 (with 1% PVPK12); (E)-(H) PVPK17-mGB2; (I)-(L) PVPK30-mGB2; (M)-(P) PVPK12-mGB2 (with 2% PVPK12); (Q)-(T) WPB. PI-A: PI-area
TA (mg?mL-1) | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 2 | 3 | 4 | |||||
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
PVPK12-mGB2 (with 1% PVPK12) | 3.70±0.17 | 27.37±1.76 | 4.37±0.46 | 30.63±4.40 | 4.47±0.25 | 52.43±10.00 | 6.23±0.15 | 79.37±5.56 |
PVPK17-mGB2 | 3.30±0.10 | 30.67±2.12 | 3.90±0.35 | 51.77±6.20 | 5.10±0.17 | 70.80±1.04 | 7.70±0.70 | 87.33±0.71 |
PVPK30-mGB2 | 3.47±0.32 | 27.93±1.77 | 3.63±0.25 | 41.00±8.66 | 5.70±0.46 | 82.73±3.07 | 7.30±0.17 | 88.93±3.90 |
PVPK12-mGB2 (with 2% PVPK12) | 3.47±0.06 | 30.73±0.95 | 3.67±0.06 | 41.83±11.98 | 4.10±0.10 | 42.67±3.09 | 3.83±0.15 | 38.20±6.28 |
WPB | 4.50±0.17 | 48.27±0.32 | 4.60±0.30 | 47.63±4.21 | 5.17±0.32 | 50.20±5.97 | 6.07±0.06 | 47.07±5.83 |
表1 在不同种类提取液中添加不同浓度单宁(TA)对大豆叶片核DNA提取效果的影响
Table1 Effectiveness of relative nuclear DNA prepared from Glycine max leaf tissue with different isolation buffers exposed to different concentration of tannic acid (TA)
TA (mg?mL-1) | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 2 | 3 | 4 | |||||
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
PVPK12-mGB2 (with 1% PVPK12) | 3.70±0.17 | 27.37±1.76 | 4.37±0.46 | 30.63±4.40 | 4.47±0.25 | 52.43±10.00 | 6.23±0.15 | 79.37±5.56 |
PVPK17-mGB2 | 3.30±0.10 | 30.67±2.12 | 3.90±0.35 | 51.77±6.20 | 5.10±0.17 | 70.80±1.04 | 7.70±0.70 | 87.33±0.71 |
PVPK30-mGB2 | 3.47±0.32 | 27.93±1.77 | 3.63±0.25 | 41.00±8.66 | 5.70±0.46 | 82.73±3.07 | 7.30±0.17 | 88.93±3.90 |
PVPK12-mGB2 (with 2% PVPK12) | 3.47±0.06 | 30.73±0.95 | 3.67±0.06 | 41.83±11.98 | 4.10±0.10 | 42.67±3.09 | 3.83±0.15 | 38.20±6.28 |
WPB | 4.50±0.17 | 48.27±0.32 | 4.60±0.30 | 47.63±4.21 | 5.17±0.32 | 50.20±5.97 | 6.07±0.06 | 47.07±5.83 |
图2 新鲜草本植物叶片细胞核DNA相对含量直方图 用PVPK12-mGB2 (含1% PVPK12)、LB01和CyStain? PI Absolute P分别制备细胞核悬液, 冰上处理15分钟, 经碘化丙啶(PI)染色后, 流式细胞仪检测叶片细胞核DNA相对含量。(A) 辣椒; (B) 水稻; (C) 烟草; (D) 玉簪; (E) 林地鼠尾草; (F) 假龙头花; (G) 甘薯; (H) 大豆。PI-A: PI-面积
Figure 2 Histograms of relative nuclear DNA content in fresh herbaceous plant leaves Samples were prepared with isolation buffers PVPK12-mGB2 (with 1% PVPK12), LB01 and CyStain? PI Absolute P, and treated on ice for 15 min. After stained with Propidium Iodide (PI), relative nuclear DNA contents were measured using a LSRFortessa flow cytometer. (A) Capsicum annuum; (B) Oryza sativa; (C) Nicotiana tabacum; (D) Hosta plantaginea; (E) Salvia nemorosa; (F) Physostegia virginiana; (G) Ipomoea batatas; (H) Glycine max. PI-A: PI-area
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Capsicum annuum | 2.47±0.15 | 28.13±6.05 | 2.93±0.15 | 28.60±2.33 | 2.53±0.23 | 25.07±5.35 |
Oryza sativa | 3.13±0.21 | 21.47±3.46 | 4.03±0.15 | 31.33±6.56 | 2.97±0.35 | 24.40±4.34 |
Nicotiana tabacum | 2.37±0.06 | 18.83±5.73 | 2.47±0.06 | 15.90±3.04 | 2.50±0.17 | 17.07±2.81 |
Hosta plantaginea | 2.90±0.17 | 21.00±1.37 | 3.43±0.06 | 18.77±2.76 | 3.67±0.21 | 18.27±1.10 |
Salvia nemorosa | 3.30±0.10 | 27.40±1.18 | 3.80±0.20 | 19.00±4.54 | 3.23±0.21 | 20.83±2.00 |
Physostegia virginiana | 2.63±0.15 | 31.20±5.89 | 3.20±0.17 | 31.87±5.95 | 3.20±0.26 | 32.33±5.26 |
Ipomoea batatas | 3.57±0.06 | 31.73±3.78 | 4.53±0.65 | 30.33±1.57 | 4.97±0.55 | 28.77±2.59 |
Glycine max | 3.43±0.47 | 16.73±1.67 | 4.30±0.17 | 34.93±2.75 | 3.03±0.15 | 15.71±2.17 |
表2 采用不同细胞核提取液测试新鲜草本植物叶片细胞核提取效果
Table 2 Effectiveness of relative nuclear DNA of fresh herbaceous plant leaves with different isolation buffers
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Capsicum annuum | 2.47±0.15 | 28.13±6.05 | 2.93±0.15 | 28.60±2.33 | 2.53±0.23 | 25.07±5.35 |
Oryza sativa | 3.13±0.21 | 21.47±3.46 | 4.03±0.15 | 31.33±6.56 | 2.97±0.35 | 24.40±4.34 |
Nicotiana tabacum | 2.37±0.06 | 18.83±5.73 | 2.47±0.06 | 15.90±3.04 | 2.50±0.17 | 17.07±2.81 |
Hosta plantaginea | 2.90±0.17 | 21.00±1.37 | 3.43±0.06 | 18.77±2.76 | 3.67±0.21 | 18.27±1.10 |
Salvia nemorosa | 3.30±0.10 | 27.40±1.18 | 3.80±0.20 | 19.00±4.54 | 3.23±0.21 | 20.83±2.00 |
Physostegia virginiana | 2.63±0.15 | 31.20±5.89 | 3.20±0.17 | 31.87±5.95 | 3.20±0.26 | 32.33±5.26 |
Ipomoea batatas | 3.57±0.06 | 31.73±3.78 | 4.53±0.65 | 30.33±1.57 | 4.97±0.55 | 28.77±2.59 |
Glycine max | 3.43±0.47 | 16.73±1.67 | 4.30±0.17 | 34.93±2.75 | 3.03±0.15 | 15.71±2.17 |
图3 新鲜木本植物叶片细胞核DNA相对含量直方图 用PVPK12-mGB2 (含1% PVPK12)、LB01和CyStain? PI Absolute P分别制备新鲜叶片细胞核悬液, 经碘化丙啶(PI)染色后, 流式细胞仪检测叶片细胞核DNA相对含量。(A) 杜仲; (B) 皱叶荚蒾; (C) 玉兰; (D) 紫叶稠李; (E) 猕猴桃; (F) 金银花; (G) 水杉; (H) 银杏。PI-A: PI-面积
Figure 3 Histograms of relative nuclear DNA content in fresh woody plant leaves Samples were prepared with isolation buffers PVPK12-mGB2 (with 1% PVPK12), LB01 and CyStain? PI Absolute P, then stained with Propidium Iodide (PI), relative nuclear DNA contents were measured using a LSRFortessa flow cytometer. (A) Eucommia ulmoides; (B) Viburnum rhytidophyllum; (C) Yulania denudata; (D) Prunus virginiana; (E) Actinidia chinensis; (F) Lonicera japonica; (G) Metasequoia glyptostroboides; (H) Ginkgo biloba. PI-A: PI-area
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Eucommia ulmoides | 3.57±0.25 | 60.93±5.85 | 5.53±0.15 | 68.40±2.75 | 3.57±0.40 | 68.70±4.56 |
Viburnum rhytidophyllum | 4.70±0.46 | 49.10±2.86 | 4.20±0.17 | 48.13±3.52 | 3.77±0.55 | 47.37±2.66 |
Yulania denudata | 2.93±0.32 | 28.60±0.57 | 4.57±0.90 | 47.90±4.45 | 4.10±0.57 | 27.77±2.90 |
Prunus virginiana | 3.40±0.30 | 49.80±4.17 | 3.80±0.35 | 49.53±6.08 | 4.23±0.45 | 44.77±3.93 |
Actinidia chinensis | 3.30±0.10 | 41.30±3.24 | 4.47±0.15 | 48.67±2.89 | 4.80±0.10 | 47.23±4.45 |
Lonicera japonica | 2.70±0.10 | 20.03±0.92 | 3.40±0.20 | 23.53±6.90 | 2.70±0.17 | 23.13±5.07 |
Metasequoia glyptostroboides | 2.87±0.31 | 27.83±1.59 | 5.37±0.50 | 29.40±1.76 | 3.53±0.21 | 26.20±3.22 |
Ginkgo biloba | 3.30±0.10 | 29.40±3.30 | 4.53±0.21 | 39.16±3.56 | 3.73±0.31 | 26.47±1.50 |
表3 采用不同细胞核提取液测试新鲜木本植物叶片细胞核提取效果
Table 3 Effectiveness of relative nuclear DNA of fresh woody plant leaves with different isolation buffers
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Eucommia ulmoides | 3.57±0.25 | 60.93±5.85 | 5.53±0.15 | 68.40±2.75 | 3.57±0.40 | 68.70±4.56 |
Viburnum rhytidophyllum | 4.70±0.46 | 49.10±2.86 | 4.20±0.17 | 48.13±3.52 | 3.77±0.55 | 47.37±2.66 |
Yulania denudata | 2.93±0.32 | 28.60±0.57 | 4.57±0.90 | 47.90±4.45 | 4.10±0.57 | 27.77±2.90 |
Prunus virginiana | 3.40±0.30 | 49.80±4.17 | 3.80±0.35 | 49.53±6.08 | 4.23±0.45 | 44.77±3.93 |
Actinidia chinensis | 3.30±0.10 | 41.30±3.24 | 4.47±0.15 | 48.67±2.89 | 4.80±0.10 | 47.23±4.45 |
Lonicera japonica | 2.70±0.10 | 20.03±0.92 | 3.40±0.20 | 23.53±6.90 | 2.70±0.17 | 23.13±5.07 |
Metasequoia glyptostroboides | 2.87±0.31 | 27.83±1.59 | 5.37±0.50 | 29.40±1.76 | 3.53±0.21 | 26.20±3.22 |
Ginkgo biloba | 3.30±0.10 | 29.40±3.30 | 4.53±0.21 | 39.16±3.56 | 3.73±0.31 | 26.47±1.50 |
图4 硅胶干燥植物叶片细胞核DNA相对含量直方图 用PVPK12-mGB2 (含1% PVPK12)、LB01和CyStain? PI Absolute P分别制备硅胶干燥叶片细胞核悬液, 经碘化丙啶(PI)染色后, 流式细胞仪检测细胞核DNA相对含量。(A) 杜仲; (B) 皱叶荚蒾; (C) 玉兰; (D) 紫叶稠李; (E) 猕猴桃; (F) 金银花; (G) 水杉; (H) 银杏。PI-A: PI-面积
Figure 4 Histograms of relative nuclear DNA content of silica gel-desiccated plant leaves Samples were prepared with different isolation buffers PVPK12-mGB2 (with 1% PVPK12), LB01 and CyStain? PI Absolute P, then stained with Propidium Iodide (PI), and relative nuclear DNA contents were measured using a LSRFortessa flow cytometer. (A) Eucommia ulmoides; (B) Viburnum rhytidophyllum; (C) Yulania denudata; (D) Prunus virginiana; (E) Actinidia chinensis; (F) Lonicera japonica; (G) Metasequoia glyptostroboides; (H) Ginkgo biloba. PI-A: PI-area
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Eucommia ulmoides | 4.40±0.17 | 63.30±2.41 | 6.70±0.26 | 45.77±6.25 | 4.23±0.55 | 44.13±7.17 |
Viburnum rhytidophyllum | 3.70±0.17 | 48.97±4.50 | 5.13±0.31 | 37.67±9.35 | 4.47±0.67 | 22.60±1.84 |
Yulania denudata | 3.50±0.10 | 33.70±3.87 | 3.80±0.36 | 29.47±3.86 | 5.70±0.82 | 16.70±3.58 |
Prunus virginiana | 3.30±0.10 | 23.97±3.07 | 4.40±0.10 | 32.13±1.23 | 5.07±0.55 | 25.97±4.05 |
Actinidia chinensis | 3.50±0.10 | 33.73±4.04 | 5.13±0.12 | 36.23±5.81 | 5.00±0.30 | 33.00±4.43 |
Lonicera japonica | 4.10±0.10 | 24.20±3.81 | 3.57±0.15 | 23.33±1.10 | 3.67±0.21 | 15.23±0.23 |
Metasequoia glyptostroboides | 7.20±1.14 | 46.57±2.87 | 19.27±0.68 | 37.97±3.04 | 8.93±1.33 | 29.63±2.70 |
Ginkgo biloba | 6.47±0.23 | 19.03±0.40 | 9.67±0.25 | 45.60±1.73 | 22.87±0.90 | 48.70±0.69 |
表4 采用不同细胞核提取液测试硅胶干燥木本植物叶片细胞核DNA提取效果
Table 4 Effectiveness of relative nuclear DNA of silica gel-desiccated woody plant leaves with different isolation buffers
Species | PVPK12-mGB2 (with 1% PVPK12) | LB01 | CyStain? PI Absolute P | |||
---|---|---|---|---|---|---|
CV (%) | DF (%) | CV (%) | DF (%) | CV (%) | DF (%) | |
Eucommia ulmoides | 4.40±0.17 | 63.30±2.41 | 6.70±0.26 | 45.77±6.25 | 4.23±0.55 | 44.13±7.17 |
Viburnum rhytidophyllum | 3.70±0.17 | 48.97±4.50 | 5.13±0.31 | 37.67±9.35 | 4.47±0.67 | 22.60±1.84 |
Yulania denudata | 3.50±0.10 | 33.70±3.87 | 3.80±0.36 | 29.47±3.86 | 5.70±0.82 | 16.70±3.58 |
Prunus virginiana | 3.30±0.10 | 23.97±3.07 | 4.40±0.10 | 32.13±1.23 | 5.07±0.55 | 25.97±4.05 |
Actinidia chinensis | 3.50±0.10 | 33.73±4.04 | 5.13±0.12 | 36.23±5.81 | 5.00±0.30 | 33.00±4.43 |
Lonicera japonica | 4.10±0.10 | 24.20±3.81 | 3.57±0.15 | 23.33±1.10 | 3.67±0.21 | 15.23±0.23 |
Metasequoia glyptostroboides | 7.20±1.14 | 46.57±2.87 | 19.27±0.68 | 37.97±3.04 | 8.93±1.33 | 29.63±2.70 |
Ginkgo biloba | 6.47±0.23 | 19.03±0.40 | 9.67±0.25 | 45.60±1.73 | 22.87±0.90 | 48.70±0.69 |
Materials | PVPK12-mGB2 (with 1% PVPK12) | CyStain? PI Absolute P | ||
---|---|---|---|---|
Genome size (Mb) | CV (%) | Genome size (Mb) | CV (%) | |
Fresh leaf | 276.82 | 2.83±0.74 | 281.80 | 3.43±0.32 |
Dry leaf | 280.54 | 3.80±0.10 | 282.54 | 4.00±0.30 |
表5 不同细胞核提取液提取无花果叶片核DNA基因组大小测定
Table 5 Estimation of genome size of Ficus carica leaf nuclear DNA with different nuclear isolation buffers
Materials | PVPK12-mGB2 (with 1% PVPK12) | CyStain? PI Absolute P | ||
---|---|---|---|---|
Genome size (Mb) | CV (%) | Genome size (Mb) | CV (%) | |
Fresh leaf | 276.82 | 2.83±0.74 | 281.80 | 3.43±0.32 |
Dry leaf | 280.54 | 3.80±0.10 | 282.54 | 4.00±0.30 |
图5 中麻黄倍性测定 用不同细胞核提取液分别制备木贼麻黄和中麻黄叶片细胞核混合悬液, 经碘化丙啶(PI)染色后, 流式细胞术测定木贼麻黄(a)和中麻黄(b)倍性。(A) PVPK12-mGB2 (含1% PVPK12); (B) LB01; (C) CyStain? PI Absolute P; (D) WPB。DI: DNA指数; PI-A: PI-面积
Figure 5 Determination of Ephedra intermedia DNA ploidy Samples were prepared with different isolation buffers, then stained with Propidium Iodide (PI) and measured using a LSRFortessa flow cytometer (a: Ephedra equisetina; b: E. intermedia). (A) PVPK12-mGB2 (with 1% PVPK12); (B) LB01; (C) CyStain? PI Absolute P; (D) WPB. DI: DNA index; PI-A: PI-area
[1] | 陈西娟, 王成章, 叶建中 (2008). 银杏叶化学成分及其应用研究进展. 生物质化学工程 42(4), 57-62. |
[2] | 金永日, 桂明玉, 李绪文, 陆娟, 马场正树, 奥山徹, 徐吉庆 (2007). 狗枣猕猴桃叶化学成分研究. 高等学校化学学报 28, 2060-2064. |
[3] | 赖娟华, 徐丽瑛, 饶华, 李玉云 (2004). 杜仲叶化学成分和药理作用研究概况. 实用中西医结合临床 4(2), 67-68, 78. |
[4] | 李军集, 孟忠磊, 黎贵卿 (2012). 广西白玉兰花和叶片挥发油化学成分的GC/MS分析. 西南林业大学学报 32(6), 102-106. |
[5] | 马广莹, 史小华, 邹清成, 田丹青, 朱开元, 詹菁, 周江华 (2018). 8个玉簪品种幼叶的营养成分测定及品质分析. 浙江农业科学 59, 814-820. |
[6] | 潘秋文 (2004). 金银花叶的研究进展. 浙江中医学院学报 28(4), 90. |
[7] | 宋二颖, 雷荣爱 (1997). 水杉叶挥发油成分分析. 中药材 20, 514-515. |
[8] | 孙兴姣, 李红娇, 刘婷, 李骁 (2018). 麻黄属植物化学成分及临床应用的研究进展. 中国药事 32, 201-209. |
[9] | 王庆菊, 胡艳丽, 李晓磊, 王磊, 沈向 (2007). 紫叶稠李叶片不同叶序花青苷与化学成分的相关性. 山东农业大学学报(自然科学版) 38, 557-560. |
[10] | 吴忆微, 蒋立勤 (2013). 红薯叶功效成分及抗肿瘤作用研究进展. 中国食物与营养 19(12), 63-65. |
[11] | 邢全, 石雷, 刘保东, 崔洪霞, 张金政 (2004). 枇杷叶荚蓬叶片解剖结构及其生态学意义. 园艺学报 31, 526-528. |
12 | 严旭, 左艳春, 王红林, 李杨, 李影正, 寇晶, 周晓康, 唐祈林, 杜周和 (2021). 禾本科三倍体: 形成、鉴定与利用. 植物学报 56, 372-387. |
[13] |
Bainard JD, Husband BC, Baldwin SJ, Fazekas AJ, Gregory TR, Newmaster SG, Kron P (2011). The effects of rapid desiccation on estimates of plant genome size. Chromosome Res 19, 825-842.
DOI PMID |
[14] |
Bennett MD, Leitch IJ (2005). Plant genome size research: a field in focus. Ann Bot 95, 1-6.
DOI URL |
[15] | Bühler V (2005). Polyvinylpyrrolidone Excipients for Pharmaceuticals:Povidone, Crospovidone and Copovidone. Ber- lin, Heidelberg: Springer. pp. 5-124. |
[16] |
Čertner M, Lučanová M, Sliwinska E, Kolář F, Loureiro J (2022). Plant material selection, collection, preservation, and storage for nuclear DNA content estimation. Cytometry A 101, 737-748.
DOI URL |
[17] |
Chase MW, Hills HH (1991). Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40, 215-220.
DOI URL |
[18] |
Doležel J, Bartoš J (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95, 99-110.
DOI URL |
[19] |
Doležel J, Binarová P, Lucretti S (1989). Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31, 113-120.
DOI URL |
[20] |
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983). Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049-1051.
DOI PMID |
[21] |
Galbraith DW, Lambert GM, Macas J, Dolezel J (2001). Analysis of nuclear DNA content and ploidy in higher plants. Curr Protoc Cytom doi: 10.1002/0471142956.cy-0706s02.
DOI |
[22] | Kabera JN, Semana E, Mussa AR, He X (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2, 377-392. |
[23] |
Loureiro J, Kron P, Temsch EM, Koutecký P, Lopes S, Castro M, Castro S (2021). Isolation of plant nuclei for estimation of nuclear DNA content: overview and best practices. Cytometry A 99, 318-327.
DOI URL |
[24] |
Loureiro J, Rodriguez E, Doležel J, Santos C (2006a). Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98, 515-527.
DOI URL |
[25] |
Loureiro J, Rodriguez E, Doležel J, Santos C (2006b). Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98, 679-689.
DOI URL |
[26] |
Loureiro J, Rodriguez E, Doležel J, Santos C (2007). Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100, 875-888.
DOI URL |
[27] |
Noirot M, Barre P, Duperray C, Louarn J, Hamon S (2003). Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Ann Bot 92, 259-264.
DOI URL |
[28] |
Sadhu A, Bhadra S, Bandyopadhyay M (2016). Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers. Ann Bot 118, 1057-1070.
DOI URL |
[1] | 刘维仲, 王洁茹, 胡勇. 连续光照转暗培养联合药物处理实现衣藻细胞的高水平同步化[J]. 植物学报, 2015, 50(3): 363-371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||