植物学报 ›› 2022, Vol. 57 ›› Issue (2): 250-258.DOI: 10.11983/CBB21213
• 专题论坛 • 上一篇
邹青青1,2, 吴含玉1, 刘东焕3,*(), 姜闯道1,*()
收稿日期:
2021-11-30
接受日期:
2022-02-25
出版日期:
2022-03-01
发布日期:
2022-03-24
通讯作者:
刘东焕,姜闯道
作者简介:
jcdao@ibcas.ac.cn基金资助:
Qingqing Zou1,2, Hanyu Wu1, Donghuan Liu3,*(), Chuangdao Jiang1,*()
Received:
2021-11-30
Accepted:
2022-02-25
Online:
2022-03-01
Published:
2022-03-24
Contact:
Donghuan Liu,Chuangdao Jiang
摘要: 光合作用是地球上最重要的化学反应。虽然针对植物光合作用已经进行了广泛深入的研究, 但从三维层面探讨植物叶片光合功能及其调节作用的工作较少。叶片结构、光合机构组分、叶片内光能吸收和传递均具有明显的三维特性, 极大影响叶片内CO2转运、叶肉细胞的电子传递和碳同化, 进而使叶片光合功能及其调控表现出复杂的三维特征。因此, 从三维角度分析叶片光合特性有助于理解光合作用机理, 也能够为提高植物光合作用效率提供理论支持。
邹青青, 吴含玉, 刘东焕, 姜闯道. 植物光合作用的三维特性研究进展. 植物学报, 2022, 57(2): 250-258.
Qingqing Zou, Hanyu Wu, Donghuan Liu, Chuangdao Jiang. Advances in Three-dimensional Characteristics of Photosynthesis in Plants. Chinese Bulletin of Botany, 2022, 57(2): 250-258.
[1] | 程建峰, 陈根云, 沈允钢 (2010). 神农架林区不同类型植物的叶片特征与光合性能研究. 生态环境学报 19, 165-171. |
[2] |
巩玥, 陈海苗, 姜闯道, 石雷 (2014). 植物叶片解剖结构的量化及其在C4植物高粱中的应用. 植物学报 49, 173-182.
DOI |
[3] | 宋丽清, 胡春梅, 侯喜林, 石雷, 刘立安, 杨景成, 姜闯道 (2015). 高粱、紫苏叶脉密度与光合特性的关系. 植物学报 50, 100-106. |
[4] |
王晓琳, 李志强, 姜闯道, 石雷, 邢全, 刘立安 (2012). 散射光和直射光对高粱叶片光合功能的影响. 作物学报 38, 1452-1459.
DOI |
[5] |
Amunts A, Drory O, Nelson N (2007). The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447, 58-63.
DOI URL |
[6] |
Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59, 89-113.
DOI PMID |
[7] |
Barbosa C, Pugnaire FI, Peroni N, Castellani TT (2018). Warming effects on the colonization of a coastal ecosystem by Furcraea foetida (Asparagaceae), a clonal invasive species. Plant Ecol 219, 813-821.
DOI URL |
[8] |
Brodersen CR, Vogelmann TC (2010). Do changes in light direction affect absorption profiles in leaves? Funct Plant Biol 37, 403-412.
DOI URL |
[9] |
Buckley TN (2015). The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. Plant Cell Environ 38, 7-22.
DOI URL |
[10] |
Buckley TN, Farquhar GD (2004). A new analytical model for whole-leaf potential electron transport rate. Plant Cell Environ 27, 1487-1502.
DOI URL |
[11] |
Cui M, Vogelmann TC, Smith WK (1991). Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea. Plant Cell Environ 14, 493-500.
DOI URL |
[12] |
DeBlasio SL, Mullen JL, Luesse DR, Hangarter RP (2003). Phytochrome modulation of blue light-induced chloroplast movements in Arabidopsis. Plant Physiol 133, 1471-1479.
PMID |
[13] |
Drag DW, Slattery R, Siebers M, DeLucia EH, Ort DR, Bernacchi CJ (2020). Soybean photosynthetic and biomass responses to carbon dioxide concentrations ranging from pre-industrial to the distant future. J Exp Bot 71, 3690-3700.
DOI URL |
[14] |
Earles JM, Buckley TN, Brodersen CR, Busch FA, Cano FJ, Choat B, Evans JR, Farquhar GD, Harwood R, Huynh M, John GP, Miller ML, Rockwell FE, Sack L, Scoffoni C, Struik PC, Wu A, Yin XY, Barbour MM (2019). Embracing 3D complexity in leaf carbon-water exchange. Trends Plant Sci 24, 15-24.
DOI PMID |
[15] |
Earles JM, Théroux-Rancourt G Roddy AB, Gilbert ME, McElrone AJ, Brodersen CR (2018). Beyond porosity: 3D leaf intercellular airspace traits that impact mesophyll conductance. Plant Physiol 178, 148-162.
DOI PMID |
[16] |
Eckstein A, Zięba P, Gabryś H (2012). Sugar and light effects on the condition of the photosynthetic apparatus of Arabidopsis thaliana cultured in vitro. J Plant Growth Regul 31, 90-101.
DOI URL |
[17] |
Evans JR, Kaldenhoff R, Genty B, Terashima I (2009). Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60, 2235-2248.
DOI PMID |
[18] | Evans JR, Loreto F (2000). Acquisition and diffusion of CO2 in higher plant leaves. In: Leegood RC, Sharkey TD, von Caemmerer S, eds. Photosynthesis:Physiology and Metabolism. Dordrecht: Kluwer Academic. pp. 321-351. |
[19] |
Evans JR, Morgan PB, Von Caemmerer S (2017). Light quality affects chloroplast electron transport rates estimated from Chl fluorescence measurements. Plant Cell Physiol 58, 1652-1660.
DOI PMID |
[20] |
Evans JR, Vogelmann TC (2003). Profiles of 14C fixation through spinach leaves in relation to light absorption and photosynthetic capacity. Plant Cell Environ 26, 547-560.
DOI URL |
[21] |
Evans JR, Von Caemmerer S (1996). Carbon dioxide diffusion inside leaves. Plant Physiol 110, 339-346.
PMID |
[22] | Evans JR, Von Caemmerer S, Setchell BA, Hudson GS (1994). The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Australian J Plant Physiol 21, 475-495. |
[23] |
Galmés J, Ochogavía JM, Gago J, Roldán EJ, Cifre J, Conesa MÀ (2013). Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant Cell Environ 36, 920-935.
DOI URL |
[24] |
Harwood R, Goodman E, Gudmundsdottir M, Huynh M, Musulin Q, Song M, Barbour MM (2020). Cell and chloroplast anatomical features are poorly estimated from 2D cross-sections. New Phytol 225, 2567-2578.
DOI URL |
[25] | Hatch MD (1992). C4 photosynthesis: an unlikely process full of surprises. Plant Cell Physiol 33, 333-342. |
[26] |
Ho QT, Berghuijs HNC, Watté R, Verboven P, Herremans E, Yin XY, Retta MA, Aernouts B, Saeys W, Helfen L, Farquhar GD, Struik PC, Nicolaï BM (2016). Three-di-a)mensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis. Plant Cell Environ 39, 50-61.
DOI URL |
[27] |
Holloway-Phillips M (2019). Illuminating photosynthesis in the mesophyll of diverse leaves. Plant Physiol 180, 1256- 1258.
DOI PMID |
[28] |
Iermak I, Vink J, Bader AN, Wientjes E, van Amerongen H (2016). Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy. Biochim Biophys Acta-Bioenerg 1857, 1473-1478.
DOI URL |
[29] |
Jahnke S, Krewitt M (2002). Atmospheric CO2 concentration may directly affect leaf respiration measurement in tobacco, but not respiration itself. Plant Cell Environ 25, 641-651.
DOI URL |
[30] |
Johnson DM, Smith WK, Vogelmann TC, Brodersen CR (2005). Leaf architecture and direction of incident light influence mesophyll fluorescence profiles. Am J Bot 92, 1425-1431.
DOI PMID |
[31] |
Karabourniotis G, Bornman JF, Nikolopoulos D (2000). A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Quercus coccifera. Plant Cell Environ 23, 423-430.
DOI URL |
[32] |
Klughammer C, Schreiber U (2015). Apparent PSII absorption cross-section and estimation of mean PAR in optically thin and dense suspensions of Chlorella. Photosynth Res 123, 77-92.
DOI URL |
[33] |
Laisk A, Edwards GE (1998). Oxygen and electron flow in C4 photosynthesis: mehler reaction, photorespiration and CO2 concentration in the bundle sheath. Planta 205, 632- 645.
DOI URL |
[34] |
Liakoura V, Fotelli MN, Rennenberg H, Karabourniotis G (2009). Should structure-function relations be considered separately for homobaric vs. heterobaric leaves? Am J Bot 96, 612-619.
DOI PMID |
[35] |
Lichtenberg M, Trampe ECL, Vogelmann TC, Kühl M (2017). Light sheet microscopy imaging of light absorption and photosynthesis distribution in plant tissue. Plant Physiol 175, 721-733.
DOI PMID |
[10] |
Maai E, Miyake H, Taniguchi M (2011). Differential positioning of chloroplasts in C4 mesophyll and bundle sheath cells. Plant Signal Behav 6, 1111-1113.
DOI PMID |
[37] |
Mantuano D, Ornellas T, Aidar MPM, Mantovani A (2021). Photosynthetic activity increases with leaf size and intercellular spaces in an allomorphic lianescent aroid Rhodospatha oblongata. Funct Plant Biol 48, 557-566.
DOI PMID |
[38] |
Morison JIL, Lawson T (2007). Does lateral gas diffusion in leaves matter? Plant Cell Environ 30, 1072-1085.
PMID |
[39] |
Nikolopoulos D, Liakopoulos G, Drossopoulos I, Karabourniotis G (2002). The relationship between anatomy and photosynthetic performance of heterobaric leaves. Plant Physiol 129, 235-243.
PMID |
[40] |
Nishio JN, Sun J, Vogelmann TC (1993). Carbon fixation gradients across spinach leaves do not follow internal light gradients. Plant Cell 5, 953-961.
DOI URL |
[41] |
Oguchi R, Douwstra P, Fujita T, Chow WS, Terashima I (2011). Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. New Phytol 191, 146-159.
DOI URL |
[42] |
Peguero-Pina JJ, Gil-Pelegrín E, Morales F (2009). Photosystem II efficiency of the palisade and spongy mesophyll in Quercus coccifera using adaxial/abaxial illumination and excitation light sources with wavelengths varying in penetration into the leaf tissue. Photosynth Res 99, 49-61.
DOI URL |
[43] |
Pierantoni M, Brumfeld V, Addadi L, Weiner S (2019). A 3D study of the relationship between leaf vein structure and mechanical function. Acta Biomater 88, 111-119.
DOI PMID |
[44] |
Pieruschka R, Huber G, Berry JA (2010). Control of transpiration by radiation. Proc Natl Acad Sci USA 107, 13372- 13377.
DOI URL |
[45] |
Pieruschka R, Schurr U, Jahnke S (2005). Lateral gas diffusion inside leaves. J Exp Bot 56, 857-864.
PMID |
[46] |
Pieruschka R, Schurr U, Jensen M, Wolff WF, Jahnke S (2006). Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves. New Phytol 169, 779-788.
PMID |
[47] |
Qin XC, Suga M, Kuang TY, Shen JR (2015). Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348, 989-995.
DOI URL |
[48] |
Rodrigues TM, Amaro ACE, Boaro CSF, Mendes KR, de Melo Silva SC, Júnior VF, Machado SR (2017). Four distinct leaf types in the brazilian cerrado, based on bundle sheath extension morphology. Botany 95, 1171-1178.
DOI URL |
[49] |
Rogowski P, Wasilewska-Dębowska W, Krupnik T, Drożak A, Zienkiewicz M, Krysiak M, Romanowska E (2019). Photosynthesis and organization of maize mesophyll and bundle sheath thylakoids of plants grown in various light intensities. Environ Exp Bot 162, 72-86.
DOI |
[50] |
Romanowska E, Drozak A (2006). Comparative analysis of biochemical properties of mesophyll and bundle sheath chloroplasts from various subtypes of C4 plants grown at moderate irradiance. Acta Biochim Pol 53, 709-719.
PMID |
[51] |
Sáez PL, Bravo LA, Cavieres LA, Vallejos V, Sanhueza C, Font-Carrascosa M, Gil-Pelegrin E, Peguero-Pina JJ, Galmés J (2017). Photosynthetic limitations in two antarctic vascular plants: importance of leaf anatomical traits and Rubisco kinetic parameters. J Exp Bot 68, 2871- 2883.
DOI URL |
[52] |
Sage TL, Sage RF (2009). The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol 50, 756-772.
DOI URL |
[53] |
Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Bartlett MK, Buckley TN, McElrone AJ, Sack L (2017). Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration. Plant Physiol 173, 1197-1210.
DOI URL |
[54] |
Slattery RA, Grennan AK, Sivaguru M, Sozzani R, Ort DR (2016). Light sheet microscopy reveals more gradual light attenuation in light-green versus dark-green soybean leaves. J Exp Bot 67, 4697-4709.
DOI PMID |
[55] |
Smith HL, McAusland L, Murchie EH (2017). Don’t ignore the green light: exploring diverse roles in plant processes. J Exp Bot 68, 2099-2110.
DOI URL |
[56] |
Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA (1997). Leaf form and photosynthesis. BioScience 47, 785-793.
DOI URL |
[57] | Strasser RJ, Srivastava A, Tsimilli-Michael M (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P, eds. Probing Photosynthesis:Mechanism, London: Taylor and Francis. pp. 445- 483. |
[58] |
Sun JD, Nishio JN (2001). Why abaxial illumination limits photosynthetic carbon fixation in spinach leaves. Plant Cell Physiol 42, 1-8.
PMID |
[59] |
Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009). Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50, 684-697.
DOI PMID |
[60] |
Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006). Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57, 343-354.
PMID |
[61] |
Terashima I, Inoue Y (1985a). Vertical gradient in photosynthetic properties of spinach chloroplast dependent on intra-leaf light environment. Plant Cell Physiol 26, 781- 785.
DOI URL |
[62] | Terashima I, Inoue Y (1985b). Palisade tissue chloroplasts and spongy tissue chloroplasts in spinach: biochemical and ultrastructural differences. Plant Cell Physiol 26, 63- 75. |
[63] |
Terashima I, Saeki T (1983). Light environment within a leaf I. Optical properties of paradermal sections of Camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues. Plant Cell Physiol 24, 1493-1501.
DOI URL |
[64] |
Théroux-Rancourt G, Gilbert ME (2017). The light response of mesophyll conductance is controlled by structure across leaf profiles. Plant Cell Environ 40, 726-740.
DOI URL |
[65] |
Tholen D, Boom C, Zhu XG (2012). Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Sci 197, 92-101.
DOI PMID |
[66] |
Vogelmann TC, Bornman JF, Yates DJ (1996). Focusing of light by leaf epidermal cells. Physiol Plantarum 98, 43-56.
DOI URL |
[67] |
Vogelmann TC, Evans JR (2002). Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ 25, 1313-1323.
DOI URL |
[68] |
Wientjes E, Philippi J, Borst JW, Van Amerongen H (2017). Imaging the photosystem I/photosystem II chlorophyll ratio inside the leaf. Biochim Biophys Acta-Bioenerg 1858, 259-265.
DOI URL |
[69] |
Williams WT (1948). The continuity of intercellular spaces in the leaf of Pelargonium zonale, and its bearing on recent stomatal investigations. Ann Bot 12, 411-420.
DOI URL |
[70] |
Wu HY, Dong FQ, Liu LA, Shi L, Zhang WF, Jiang CD (2020). Dorsoventral variation in photosynthesis during leaf senescence probed by chlorophyll a fluorescence induction kinetics in cucumber and maize plants. Photosynthetica 58, 479-487.
DOI URL |
[71] |
Xiao Y, Tholen D, Zhu XG (2016). The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model. J Exp Bot 67, 6021-6035.
PMID |
[1] | 廖星鑫, 牛祎, 多兴武, 阿克也得力·居玛哈孜, 买热哈巴·阿不都克尤木, 热孜瓦尼姑丽·胡甫尔, 兰海燕, 曹婧. 异源表达异子蓬SaPEPC2基因提高烟草抗旱性和光合特性[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[4] | 孙永江, 王琪, 邵琪雯, 辛智鸣, 肖辉杰, 程瑾. 高温胁迫对植物光合作用的影响研究进展[J]. 植物学报, 2023, 58(3): 486-498. |
[5] | 金佳怡, 罗怿婷, 杨惠敏, 芦涛, 叶涵斐, 谢继毅, 王珂欣, 陈芊羽, 方媛, 王跃星, 饶玉春. 水稻叶绿素含量QTL定位与候选基因表达分析[J]. 植物学报, 2023, 58(3): 394-403. |
[6] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[7] | 孔照胜, 杨文强, 王柏臣, 林荣呈. 豆科饲草碳氮高效固定、转运和同化利用研究进展[J]. 植物学报, 2022, 57(6): 764-773. |
[8] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[9] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[10] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[11] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[12] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[13] | 张璐,何新华. C3和C4植物的氮素利用机制[J]. 植物学报, 2020, 55(2): 228-239. |
[14] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[15] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||