植物学报 ›› 2022, Vol. 57 ›› Issue (3): 327-339.DOI: 10.11983/CBB21192
翟琼, 陈容钦, 梁晓华, 曾楚淳, 胡博, 李玲, 李晓云()
收稿日期:
2021-11-13
接受日期:
2022-03-03
出版日期:
2022-05-01
发布日期:
2022-05-18
通讯作者:
李晓云
作者简介:
* E-mail: 20185131@m.scnu.edu.cn基金资助:
Qiong Zhai, Rongqin Chen, Xiaohua Liang, Chuchun Zeng, Bo Hu, Ling Li, Xiaoyun Li()
Received:
2021-11-13
Accepted:
2022-03-03
Online:
2022-05-01
Published:
2022-05-18
Contact:
Xiaoyun Li
About author:
First author contact: These authors contributed equally to this paper
摘要: 遗传转化是植物基因工程的重要手段。快速、高效地将目的基因导入植物细胞, 并缩短获得转基因后代的时间是遗传转化的关键。花生(Arachis hypogaea)是我国重要的油料及经济作物。目前花生的遗传转化体系尚未完善, 制约着花生的基因功能解析和分子育种进程。该文建立了一套快速、稳定的花生遗传转化体系。通过将农杆菌注射于花生第2茎节的切面获得转化植株, 再将阳性植株进行移栽和回土, 采摘注射点以上的荚果进行后续鉴定与分析。结果表明, 利用该方法可获得40%以上的T0代嵌合体植株, 约5个月可收获T0代花生种子, 其中约有9%的T1代花生植株为非嵌合体的杂合体。针对部分转基因植株结实少的问题, 进一步提出了将快速转化体系与传统组培方法相结合的优化方案。构建的快速转化方法对大蒜(Allium sativum)、马铃薯(Solanum tuberosum)和香雪兰(Freesia refracta)的遗传转化具有潜在应用价值, 对其它植物的遗传转化也有重要参考价值。
翟琼, 陈容钦, 梁晓华, 曾楚淳, 胡博, 李玲, 李晓云. 一种花生快速遗传转化方法的建立与应用. 植物学报, 2022, 57(3): 327-339.
Qiong Zhai, Rongqin Chen, Xiaohua Liang, Chuchun Zeng, Bo Hu, Ling Li, Xiaoyun Li. Establishment and Application of a Rapid Genetic Transformation Method for Peanut. Chinese Bulletin of Botany, 2022, 57(3): 327-339.
图1 农杆菌转化所用载体
Figure 1 Vectors used for Agrobacterium transformation (A) pDR5:RUBY; (B) p35S:GFP; (C) p35S:GUS (A) pDR5:RUBY; (B) p35S:GFP; (C) p35S:GUS
图2 花生快速遗传转化过程 (A) 在第2茎节处剪去顶端; (B) 转化前准备(菌液、活性剂和注射器, 活性剂为100 μmol∙L-1乙酰丁香酮); (C) 用注射器吸取农杆菌; (D) 将农杆菌注射至花生第2茎节处; (E) 暗培养3-5天; (F) 新芽生长; (G) 剪去侧芽; (H) 正常光照培养; (I) 移栽和回土, 以土壤盖过注射点为宜; (J) 采摘注射点以上的荚果(白色箭头示注射点)。Bars=1 cm
Figure 2 The process of rapid genetic transformation in peanut (A) Cut off the top at the second stem node; (B) Preparation before transformation (bacteria, active agent and syringe, active agent is 100 μmol∙L-1 acetosyringone); (C) Syringe draws Agrobacterium; (D) Agrobacterium is injected at the second stem node of the peanut; (E) Dark culture for 3 to 5 days; (F) New buds grow; (G) Cut off the lateral bud; (H) Normal light culture; (I) Transplanting and replanting, the injection point should be covered with the soil; (J) Pick pods above the injection point (the white arrow indicated the injection point). Bars=1 cm
图3 农杆菌注射花生部位的选择 (A) 随机选择实验田的120棵粤油13花生进行果针发生部位统计; (B) 对花生各茎节徒手切片后, 进行碘液染色和拍照(bars=1 mm); (C) 各个茎节的淀粉含量(*表示与第1茎节比较差异显著(P<0.01)); (D) 农杆菌注射花生第2茎节后及新芽生长情况(bar=1 cm)。SN1代表第1茎节, 即2片子叶发生的茎节, SN2代表子叶结节向上的第2个茎节, 以此类推。
Figure 3 Selection of injection site for Agrobacterium in peanut (A) The 120 peanuts were randomly selected to calculate the occurrence site of gynophores in experimental farm; (B) Peanut stems were hand out sliced and stained with iodine solution, then take photos (bars=1 mm); (C) Measurement of starch content in each stem node (* represent the significant differences when compared with the first stem node (P<0.01)); (D) New shoots growth after Agrobacterium injection (bar=1 cm). SN1 represents the first stem node that occurred with two cotyledons, SN2 represents the second stem node that above the cotyledons, and so on.
图4 快速转基因花生植株的筛选与鉴定 (A) PCR鉴定pDR5:RUBY转基因花生的电泳结果(R1-R5代表独立的转基因株系; Mock只注射不含pDR5:RUBY载体的对照菌, 下同); (B) 体视显微镜下观察对照(Mock)和pDR5:RUBY转基因植株花生叶片(bars=5 mm); (C) T0代转基因花生表型, 分别为对照(Mock)、pDR5:RUBY以及p35S:GFP的花生苗(bars=1 cm); (D) PCR鉴定p35S:GFP转基因花生的电泳结果(1-15代表独立的转基因株系); (E) 体视荧光显微镜下观察T0代转基因花生叶片中GFP蛋白的荧光(绿色), Mock为对照植株叶片, p35S:GFP为GFP过表达植株(bars=50 μm); (F) 卡纳抗性筛选p35S:GFP的T1代转基因花生苗(bar=1 cm); (G) 利用GFP抗体, Western Blot鉴定p35S:GFP转基因花生(G1-G7代表独立的转基因株系); (H) 采用共聚焦显微镜观察p35S:GFP的T1代花生原生质体中的GFP蛋白荧光(绿色), 红色为叶绿素a的自发荧光(bars=5 μm)。
Figure 4 Screening and identification of rapidly-transformation peanuts (A) The electrophoresis result is identification of pDR5:RUBY transgenic peanut plants through PCR using specific primers (R1-R5 represents independent transgenic lines; Mock, injected only with empty bacteria, the same as below); (B) Control (Mock) and pDR5:RUBY transgenic peanut leaves were observed by stereomicroscopy (bars=5 mm); (C) Phenotypic observation of T0 generation transgenic peanut, including control (Mock), pDR5:RUBY and p35S:GFP plants (bars=1 cm); (D) The electrophoresis result is the identification of p35S:GFP transgenic peanut plants using specific PCR primers (1-15 represent independent transgenic lines); (E) The fluorescence of GFP protein (green) were observed by stereomicroscopy in leaves of T0 p35S:GFP transgenic peanut, Mock is control plant, p35S:GFP is GFP overexpression plant (bars=50 μm); (F) Screening of T1 p35S:GFP transgenic peanuts using Kan resistance (bar=1 cm); (G) Identification of p35S:GFP transgenic peanut plants through Western Blot using GFP antibody (G1-G7 represents independent transgenic lines); (H) The fluorescence of GFP protein (green) were observed in T1 p35S:GFP protoplast by Confocal microscopy, red is chlorophyll a spontaneous fluorescence (bars=5 μm).
Gene (species) | Generation | Total identified plants | Positive transgenic plants | Transformation rate (%) |
---|---|---|---|---|
p35S:GFP | T0 | 30 | 18 | 60 |
pDR5:RUBY | T0 | 21 | 9 | 42.8 |
表1 花生快速遗传转化率
Table 1 The ratio of rapid transformation in peanut
Gene (species) | Generation | Total identified plants | Positive transgenic plants | Transformation rate (%) |
---|---|---|---|---|
p35S:GFP | T0 | 30 | 18 | 60 |
pDR5:RUBY | T0 | 21 | 9 | 42.8 |
图5 快速转基因花生植株的纯化与扩繁 (A) 用潮霉素B抗性筛选pDR5:RUBY转基因花生T1代的幼胚, 并将有抗性的胚诱导愈伤组织和丛生芽, 通过丛生芽扩繁转基因植株(箭头示pDR5:RUBY高表达部位); (B) 将T0代植株上具有除草剂(Basta)抗性的叶片进行传统花生组织培养, 筛选、纯化和扩繁转基因植株(图(a)中的*表示具有除?剂抗性的叶片)。Bars=1 cm
Figure 5 Purification and propagation of rapidly-transformation peanuts (A) Screening the embryo of T1 generation pDR5:RUBY transgenic peanut using hygromycin B resistance, then the callus and clustered shoots were induced from these resistance embryos, the transgenic plants were propagation using clustered shoots (the arrow indicated the high expression of pDR5:RUBY); (B) Transgenic plants were screening, purifying and propagating using tissue culture, these tissues came from peanut leaves that displayed the Basta resistance T0 plants (the * in (a) showed the Basta-resistance leaves). Bars=1 cm
图6 对大蒜、香雪兰和马铃薯芽切面进行p35S:GUS快速转化 (A1) 大蒜芽点切片示意图(左)以及注射后新长出的大蒜(右) (bars=1 cm); (A2) 对照(Mock)及p35S:GUS转化苗的GUS检测(bars=1 mm); (B1) 香雪兰芽点切片示意图(左)以及注射后长出的新芽(右) (bars=1 cm); (B2) 对照(Mock)及p35S:GUS转化苗的GUS检测(bars=1 mm); (C1) 马铃薯注射后长出的新芽(bars=1 cm); (C2) 对照(Mock, bar=1 cm)以及p35S:GUS转化苗(bars=1 mm)的GUS检测。
Figure 6 Rapidly-transformation of p35S:GUS in sprout sections from garlic, freesia and potato (A1) Garlic bud point section (left) and newly grown garlic after injection (right) (bars=1 cm); (A2) GUS detection of control (Mock) and p35S:GUS transgenic lines (bars=1 mm); (B1) Shoot spot section of freesia (left), and the new shoots after injection (right) (bars=1 cm); (B2) GUS detection of control (Mock) and p35S:GUS transgenic lines (bars=1 mm); (C1) The shoots of potato after injection (bar=1 cm); (C2) GUS detection of control (Mock, bar=1 cm) and p35S:GUS transgenic lines (bars=1 mm).
[1] | 陈容钦, 李晓云, 李玲, 胡博 (2020). 一种花生原生质体提取方法及应用. 中国专利. CN111019879A. 2020-04-17. |
[2] | 陈雪涛, 熊尚文, 袁雪梅, 张庆华 (2017). 上高紫皮大蒜品种退化原因及防止措施. 安徽农学通报 23(1), 51, 98. |
[3] | 程秀云, 罗建玲, 罗玉芳 (2013). 生熟大蒜的抑菌作用研究. 食品与机械 29(6), 89-92. |
[4] | 杜鹏飞, 王玉, 曹英萍, 杨松, 孙志超, 毛德才, 鄢家俊, 李达旭, 孙美贞, 付春祥, 白史且 (2021). 基因枪介导的老芒麦遗传转化体系的建立. 植物学报 56, 62-70. |
[5] | 和小燕 (2017). 花生叶色突变体和AhPDS基因CRISPR- Cas9体系构建与遗传转化. 硕士论文. 郑州: 河南农业大学. pp. 42-43. |
[6] | 李家磊, 管立军, 王崑仑, 高扬, 严松, 张志宏, 卢淑雯, 周野 (2020). 双波长法测定冰温贮藏西洋参中直链淀粉和支链淀粉的含量. 食品工业科技 41, 223-227. |
[7] | 刘璨, 苏良辰, 庄依娜, 覃铭, 李玲 (2010). 花生幼叶不定芽诱导与快速繁殖. 亚热带植物科学 39, 21-24, 37. |
[8] | 苗利娟, 黄冰艳, 张新友, 董文召, 刘娟, 秦利, 张俊, 齐飞艳, 石磊 (2017). 花生组培再生及农杆菌介导遗传转化研究进展. 中国农学通报 33(32), 15-20. |
[9] | 彭振英, 单雷, 张智猛, 李新国, 万书波 (2019). 花生远缘杂交后代的氨基酸含量变异分析. 花生学报 48(1), 21-26. |
[10] | 覃铭, 胡博, 刘璨, 李玲, 罗虹 (2010). AhNCED1基因转化花生研究. 热带亚热带植物学报 18, 277-282. |
[11] | 徐静, 张新友, 汤丰收, 董文召, 臧秀旺, 张忠信, 韩锁义, 秦利 (2014). 花生新品种远杂9847选育及启示. 河南农业科学 43(10), 38-41. |
[12] | 徐平丽, 唐桂英, 毕玉平, 柳展基, 单雷 (2018). 花生AhFAD2基因抑制表达的转基因后代分析. 生物工程学报 34(9), 1469-1477. |
[13] |
徐悦, 曹英萍, 王玉, 付春祥, 戴绍军 (2019). 发根农杆菌介导的菠菜毛状根遗传转化体系的建立. 植物学报 54, 515- 521.
DOI |
[14] | 杨澜, 刘雅, 项阳, 孙秀娟, 颜景畏, 张阿英 (2021). 谷子茎尖体外遗传转化体系的建立与优化. 植物学报 56, 71-79. |
[15] | 殷冬梅 (2020). 高产高抗青枯病花生新品种农大花108. 中国种业 (11), 117-118. |
[16] | 禹山林 (2008). 中国花生品种及其系谱. 上海: 上海科学技术出版社. pp. 233-745. |
[17] | 张新友, 杜培, 刘华, 董文召, 秦利, 孙子淇, 徐静, 韩锁义, 张忠信, 苗利娟, 齐飞艳, 李丽娜, 付留洋, 王思雨, 房元瑾 (2019). 花生野生种质评价与利用技术创新及新品种培育. 河南省农业科学院经济作物研究所. 国家科技成果. 2019-12-01. |
[18] |
Anuradha TS, Jami SK, Datla RS, Kirti PB (2006). Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus:: nptII fusion gene based vector. J Biosci 31, 235-246.
DOI URL |
[19] |
Bakhshy E, Zarinkamar F, Nazari M (2020). Structural and quantitative changes of starch in seed of Trigonella persica during germination. Int J Biol Macromol 164, 1284- 1293.
DOI PMID |
[20] |
Banavath JN, Chakradhar T, Pandit V, Konduru S, Guduru KK, Akila CS, Podha S, Puli COR (2018). Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Front Chem 6, 34.
DOI PMID |
[21] | Bhalani H, Thankappan R, Mishra GP, Sarkar T, Bosamia TC, Dobaria JR (2019). Regulation of antioxidant mechanisms by AtDREB1A improves soil-moisture deficit stress tolerance in transgenic peanut (Arachis hypogaea L.). PLoS One 14, e0216706. |
[22] |
Bouchez D, Camilleri C (1990). Identification of a putative rol B gene on the TR-DNA of the Agrobacterium rhizogens A4 Ri plasmid. Plant Mol Biol 14, 617-619.
PMID |
[23] |
Chen M, Yang Q, Wang T, Chen N, Pan L, Chi X, Yang ZH, Wang M, Yu S (2015). Agrobacterium-mediated genetic transformation of peanut and the efficient recovery of transgenic plants. Can J Plant Sci 95, 735-744.
DOI URL |
[24] |
Ditt RF, Nester EW, Comai L (2001). Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci USA 98, 10954-10959.
DOI URL |
[25] |
Gantait S, Mondal S (2018). Transgenic approaches for genetic improvement in groundnut (Arachis hypogaea L.) against major biotic and abiotic stress factors. J Genet Eng Biotechnol 16, 537-544.
DOI PMID |
[26] |
Gayral M, Fanuel M, Rogniaux H, Dalgalarrondo M, Elmorjani K, Bakan B, Marion D (2019). The spatiotemporal deposition of lysophosphatidylcholine within starch granules of maize endosperm and its relationships to the expression of genes involved in endoplasmic reticulum- amyloplast lipid trafficking and galactolipid synthesis. Plant Cell Physiol 60, 139-151.
DOI URL |
[27] |
He Y, Zhang T, Sun H, Zhan H, Zhao Y (2020). A reporter for noninvasively monitoring gene expression and plant transformation. Hortic Res 7, 152.
DOI URL |
[28] |
Hu JC, Li SY, Li ZL, Li HY, Song WB, Zhao HM, Lai JS, Xia LQ, Li DW, Zhang YL (2019). A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Mol Plant Pathol 20, 1463-1474.
DOI URL |
[29] |
Kiranmai K, Rao GL, Pandurangaiah M, Nareshkumar A, Reddy VA, Lokesh U, Venkatesh B, Johnson AMA, Sudhakar C (2018). A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Front Plant Sci 9, 346.
DOI PMID |
[30] |
Krishna G, Singh BK, Kim EK, Morya VK, Ramteke PW (2015). Progress in genetic engineering of peanut (Arachis hypogaea L.)—a review. Plant Biotechnol J 13, 147- 162.
DOI PMID |
[31] |
Li LM, Zhang Z, Pan SY, Li L, Li XY (2019). Characterization and metabolism effect of seed endophytic bacteria associated with peanut grown in South China. Front Microbiol 10, 2659.
DOI URL |
[32] |
Li TD, Hu JC, Sun Y, Li BS, Zhang DL, Li WL, Liu JX, Li DW, Gao CX, Zhang YL, Wang YP (2021). Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol Plant 14, 1787- 1798.
DOI URL |
[33] |
Li YQ, Shan XT, Gao RF, Han TT, Zhang J, Wang YN, Kimani S, Wang L, Gao X (2020). MYB repressors and MBW activation complex collaborate to fine-tune flower coloration in Freesia hybrida. Commun Biol 3, 396.
DOI URL |
[34] |
Liu H, Hu DX, Du PX, Wang LP, Liang XQ, Li HF, Lu Q, Li SX, Liu HY, Chen XP, Varshney RK, Hong YB (2021a). Single-cell RNA-seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut (Arachis hypogaea L.). Plant Biotechnol J 19, 2261-2276.
DOI URL |
[35] |
Liu SJ, Liu CJ, Wang X, Chen HQ (2021b). Seed-specific activity of the Arabidopsis β-glucosidase 19 promoter in transgenic Arabidopsis and tobacco. Plant Cell Rep 40, 213-221.
DOI URL |
[36] |
Liu X, Li LM, Li MJ, Su LC, Lian SM, Zhang BH, Li XY, Ge K, Li L (2018). AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Sci Rep 8, 2250.
DOI URL |
[37] |
Liu X, Li LM, Zhang BH, Zeng LD, Li L (2020). AhHDA1-mediated AhGLK1 promoted chlorophyll synthesis and photosynthesis regulates recovery growth of peanut leaves after water stress. Plant Sci 294, 110461.
DOI URL |
[38] |
Lokesh U, Venkatesh B, Kiranmai K, Nareshkumar A, Amarnathareddy V, Rao GL, Johnson AMA, Pandurangaiah M, Sudhakar C (2019). Overexpression of ß-Ketoacyl Co-A Synthase1 gene improves tolerance of drought susceptible groundnut (Arachis hypogaea L.) cultivar K-6 by increased leaf epicuticular wax accumulation. Front Plant Sci 9, 1869.
DOI URL |
[39] |
Manjulatha M, Sreevathsa R, Kumar AM, Sudhakar C, Prasad TG, Tuteja N, Udayakumar M (2014). Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Mol Biotechnol 56, 111-125.
DOI PMID |
[40] |
Mauro ML, Bettini PP (2021). Agrobacterium rhizogenes rolB oncogene: an intriguing player for many roles. Plant Physiol Biochem 165, 10-18.
DOI URL |
[41] |
Mehta R, Radhakrishnan T, Kumar A, Yadav R, Dobaria JR, Thirumalaisamy PP, Jain RK, Chigurupati P (2013). Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium-mediated genetic transformation. Indian J Virol 24, 205-213.
DOI URL |
[42] |
Nemoto K, Hara M, Suzuki M, Seki H, Oka A, Muranaka T, Mano Y (2009). Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro. Plant Signal Behav 4, 1145-1147.
DOI URL |
[43] |
Pandurangaiah M, Rao GL, Sudhakarbabu O, Nareshkumar A, Kiranmai K, Lokesh U, Thapa G, Sudhakar C (2014). Overexpression of horsegram (Macrotyloma uniflorum Lam.Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. Mol Biotechnol 56, 758-769.
DOI PMID |
[44] |
Penfield S (2017). Seed dormancy and germination. Curr Biol 27, 874-878.
DOI PMID |
[45] |
Su LC, Liu S, Liu X, Zhang BH, Li MJ, Zeng LD, Li L (2021). Transcriptome profiling reveals histone deacetylase 1 gene overexpression improves flavonoid, isoflavonoid, and phenylpropanoid metabolism in Arachis hypogaea hairy roots. Peer J 9, e10976.
DOI URL |
[46] |
Tang GY, Xu PL, Ma WH, Wang F, Liu ZJ, Wan SB, Shan L (2018). Seed-specific expression of AtLEC1increased oil content and altered fatty acid composition in seeds of peanut (Arachis hypogaea L.). Front Plant Sci 9, 260
DOI URL |
[47] |
Tiwari S, Mishra DK, Singh A, Singh PK, Tuli R (2008). Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27, 1017-1025.
DOI URL |
[48] | Tiwari V, Chaturvedi AK, Mishra A, Jha B (2015). Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiata enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea) and acts as a transcription factor. PLoS One 10, e0131567. |
[49] |
Yan Y, Zhu XJ, Yu Y, Li C, Zhang ZL, Wang F (2022). Nanotechnology strategies for plant genetic engineering. Adv Mater 34, 2106945.
DOI URL |
[50] |
Zhang CZ, Yang ZM, Tang D, Zhu YH, Wang P, Li DW, Zhu GT, Xiong XY, Shang Y, Li CH, Huang SW (2021). Genome design of hybrid potato. Cell 184, 3873-3883.
DOI URL |
[51] |
Zhao M, Zhang HX, Yan H, Qiu L, Baskin CC (2018). Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. Front Plant Sci 9, 234.
DOI URL |
[52] | Zhuang WJ, Chen H, Yang M, Wang JP, Pandey MK, Zhang C, Chang WC, Zhang LS, Zhang XT, Tang RH, Garg V, Wang XJ, Tang HB, Chow CN, Wang JP, Deng Y, Wang DP, Khan AW, Yang Q, Cai TC, Bajaj P, Wu KC, Guo BZ, Zhang XY, Li JJ, Liang F, Hu J, Liao BS, Liu SY, Chitikineni A, Yan HS, Zheng YX, Shan SH, Liu QZ, Xie DY, Wang ZY, Khan SA, Ali N, Zhao CZ, Li XG, Luo ZL, Zhang SB, Zhuang RR, Peng Z, Wang SY, Mamadou G, Zhuang YH, Zhao ZF, Yu WC, Xiong FQ, Quan WP, Yuan M, Li Y, Zou HS, Xia H, Zha L, Fan JP, Yu JG, Xie WP, Yuan JQ, Chen K, Zhao SS, Chu WT, Chen YT, Sun PC, Meng FB, Zhuo T, Zhao YH, Li CJ, He GH, Zhao YL, Wang CC, Kavikishor PB, Pan RL, Paterson AH, Wang XY, Ming R, Varshney RK (2019). The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet 51, 865-876. |
[1] | 张锋, Richard Dormatey, 刘寅笃, 李成举, 王云姣, 张春利, 张莹, 范又方, 姚攀锋, 毕真真, 刘玉汇, 白江平, 孙超 . 耐亚磷酸盐马铃薯的筛选与评价[J]. 植物学报, 2024, 59(4): 0-0. |
[2] | 刘寅笃, 脱军康, 李成举, 张锋, 张春利, 张莹, 王云姣, 范又方, 姚攀锋, 孙超, 刘玉汇, 刘震, 毕真真, 白江平. 耐低钾马铃薯品种的筛选与评价[J]. 植物学报, 2024, 59(1): 75-88. |
[3] | 何雨龙, 王佳歌, 赵珊珊, 高锦, 常英英, 赵喜亭, 聂碧华, 杨清香, 张江利, 李明军. 马铃薯Y病毒RPA-CRISPR/Cas12a检测技术体系的建立与应用[J]. 植物学报, 2022, 57(3): 308-319. |
[4] | 许操. 而今迈步从头越: 马铃薯育种跨入“有种”时代[J]. 植物学报, 2021, 56(5): 516-519. |
[5] | 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境[J]. 植物生态学报, 2019, 43(8): 718-728. |
[6] | 刘勋,张娇,沈昱辰,谢德斌,李宏利,李春明,易小平,赵勇,唐道彬,吕长文,王季春. 基于光合系统参数建立马铃薯耐荫性综合评价体系[J]. 植物学报, 2019, 54(3): 360-370. |
[7] | 刘国红, 刘波, 车建美, 陈倩倩, 林乃铨, 崔卫东. 新疆伊犁马铃薯根际芽胞杆菌纯培养多样性[J]. 生物多样性, 2017, 25(8): 856-863. |
[8] | 龙海涛, 李丽梅, 谢泽虹, 刘帅, 李晓云, 邓斌, 刘海燕, 李玲. 综合隶属函数法评价花生品种抗旱性与AhNCED1基因表达的关系[J]. 植物学报, 2015, 50(6): 706-712. |
[9] | 严玫, 张新友, 韩锁义, 黄冰艳, 董文召, 刘华, 孙子淇, 张忠信, 汤丰收. 花生重要农艺及产量性状的全基因组关联分析[J]. 植物学报, 2015, 50(4): 460-472. |
[10] | 孟德云, 侯林琳, 杨莎, 孟静静, 郭峰, 李新国, 万书波. 外源多胺对盆栽花生盐胁迫的缓解作用[J]. 植物生态学报, 2015, 39(12): 1209-1215. |
[11] | 张佳蕾, 郭峰, 孟静静, 于晓霞, 杨莎, 张思斌, 耿耘, 李新国, 万书波. 酸性土施用钙肥对花生产量和品质及相关代谢酶活性的影响[J]. 植物生态学报, 2015, 39(11): 1101-1109. |
[12] | 厉广辉, 万勇善, 刘风珍, 张昆. 苗期干旱及复水条件下不同花生品种的光合特性[J]. 植物生态学报, 2014, 38(7): 729-739. |
[13] | 吴正锋, 孙学武, 王才斌, 郑亚萍, 万书波, 刘俊华, 郑永美, 吴菊香, 冯昊, 于天一. 弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿体超微结构的影响[J]. 植物生态学报, 2014, 38(7): 740-748. |
[14] | 方琦, 董家红, 郑宽瑜, 张仲凯. 番茄环纹斑点病毒与马铃薯Y病毒复合侵染烟草的细胞病理特征[J]. 植物学报, 2014, 49(6): 704-709. |
[15] | 张佳蕾,李向东,杨传婷,高芳,张凤,王媛媛,孙莲强. 两种品质类型花生品质形成与子叶细胞超微结构的关系[J]. 植物生态学报, 2013, 37(8): 768-776. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||