植物学报 ›› 2020, Vol. 55 ›› Issue (6): 693-704.DOI: 10.11983/CBB20006
张茜, 裘天航, 王安安, 周华健, 袁敏, 李利, 白素兰, 崔素霞*()
收稿日期:
2020-01-14
接受日期:
2020-08-26
出版日期:
2020-11-01
发布日期:
2020-11-11
通讯作者:
崔素霞
作者简介:
*E-mail: sxcui@cnu.edu.cn基金资助:
Xi Zhang, Tianhang Qiu, Anan Wang, Huajian Zhou, Min Yuan, Li Li, Sulan Bai, Suxia Cui*()
Received:
2020-01-14
Accepted:
2020-08-26
Online:
2020-11-01
Published:
2020-11-11
Contact:
Suxia Cui
摘要: 为探明北京地区芦苇(Phragmites australis)的资源状态和多样性, 实地考察北京主要河流、湿地和水库, 发现北京地区芦苇总生长面积已超过600 hm2。芦苇染色体倍性以八倍体为主, 四倍体次之。在面积较大的湿地内, 八倍体单一芦苇群落占据优势地位; 而在城市的浅河内有形态和遗传性多样的混合种群。研究表明, 植物性状和倍性水平之间无显著相关性。在小清河发现了6种形态各异的芦苇克隆, 均属于叶绿体DNA片段的P单倍型; 其单倍体基因组大小为(0.499±0.019) pg, 变异系数为3.8%。这表明表型与单倍型之间也不具相关性。此外, 发现1个具有变叶特性的芦苇, 将其命名为金条芦苇。北京地区芦苇形态和遗传多样性为研究芦苇基因型与环境适应性之间的关系提供了珍贵的资源。
张茜, 裘天航, 王安安, 周华健, 袁敏, 李利, 白素兰, 崔素霞. 北京地区芦苇资源状态及其多样性. 植物学报, 2020, 55(6): 693-704.
Xi Zhang, Tianhang Qiu, Anan Wang, Huajian Zhou, Min Yuan, Li Li, Sulan Bai, Suxia Cui. Morphology and Genetic Diversity of Phragmites australis in Beijing. Chinese Bulletin of Botany, 2020, 55(6): 693-704.
图1 北京地区的芦苇分布和染色体倍性分析 (A) 北京地区芦苇分布(芦苇的主要分布区域以红点标注, 并依照水系进行编号: 永定河水系(Y)、潮白河水系(C)、北运河水系(B)、大运河水系(D)和蓟运河水系(J); 蓝色表示河流、湖泊或人造水库); (B)-(E) 用流式细胞术检测芦苇染色体倍性(横坐标为通道的荧光强度, 纵坐标为细胞核数目; G1和G2期分别用深红色和浅红色表示; 碎片和聚集体分别用灰紫色和绿色表示)。图(B)和(C)以水稻为内参, 检测四倍体芦苇; 图(D)和(E)以四倍体芦苇为内参, 检测八倍体芦苇。
Figure 1 Distribution and chromosome ploidy of Phragmites australis in Beijing (A) Distribution of reeds in Beijing (The main distribution areas of reeds are marked by red dots and numbered according to the water system: Yongding River System (Y), Chaobai River System (C), North Canal System (B), Grand Canal System (D), Ji Canal System (J); Blue indicates rivers, lakes or artificial reservoirs); (B)-(E) Detection of reed chromosome ploidy by flow cytometry (The abscissa is the fluorescence intensity of the channel, and the ordinate is the number of nuclei; G1 and G2 phases are indicated by dark red and light red, respectively; fragments and aggregates are indicated by gray-purple and green, respectively). Figures (B) and (C) detected the tetraploid reeds using rice as the internal reference; Figures (D) and (E) detected the octaploid reeds using the tetraploid reeds as the internal reference.
Water system | Distribution location | Distribution description | Area (hm2) | Proportion (%) | Ploidy level | Origin | |||
---|---|---|---|---|---|---|---|---|---|
Yongding River System | 304.11 | 47.16 | |||||||
Y01 | Weishui River | Distributed at both sides of the west of the Weishui River Tunnel passes th- rough the World Horticultural, exposition to Yankang Road | 5.14 | 0.80 | NA | 115.95°E, 40.45°N | |||
Y02 | Guanting Reservoir (in Beijing) | Scattered along the bank about 15 km west of the Guanting Bridge | 0.21 | 0.03 | 8x/4x | 115.87°E, 40.44°N | |||
Y03 | Wild Duck Lake National Wetland Park | Distributed in patches in the core area, buffer zone, and test area | 257.40 | 39.92 | 8x | 115.86°E, 40.41°N | |||
Water system | Distribution location | Distribution description | Area (hm2) | Proportion (%) | Ploidy level | Origin | |||
Y04 | Shanxia Section of Yongding River | Distributed along the river bank | 8.31 | 1.29 | NA | 116.09°E, 39.99°N | |||
Y05 | Sanjiadian Rush Wetland Park | Distributed in patches | 4.60 | 0.71 | 8x | 116.10°E, 39.97°N | |||
Y06 | Lianshi Lake Park | Distributed along both banks of the river | 2.12 | 0.33 | 8x | 116.15°E, 39.90°N | |||
Y07 | Yuanbo Lake Wetland | Distributed in patches | 16.30 | 2.53 | NA | 116.21°E, 39.87°N | |||
Y08 | Ludi Park | Distributed in patches along the coast | 9.71 | 1.51 | NA | 116.22°E, 39.84°N | |||
Y09 | Niantan Park | Distributed around the shore of a lake in the park | 0.32 | 0.05 | NA | 116.31°E, 39.71°N | |||
Daqing River System | 58.63 | 9.09 | |||||||
D01 | Chongqing Reservoir | Distributed in patches in the southwest corner of the reservoir | 13.17 | 2.04 | NA | 116.08°E, 39.79°N | |||
D02 | Jiuzi River | Distributed in the upper reaches of Xiaoqing River | 5.42 | 0.84 | 8x | 116.19°E, 39.75°N | |||
D03 | Xiaoqing River | Distributed in patches along the river from the south of Shuisi Road to the junction of Hedgehog River | 20.02 | 3.10 | 8x/4x | 116.20°E, 39.72°N | |||
D04 | Dashi River | Distributed along the north and south rivers of Jingzhou Road | 16.41 | 2.54 | NA | 116.03°E, 39.70°N | |||
D05 | Juma River | Sporadic distribution from Shidu to Yesanpo | 0.31 | 0.05 | 8x | 115.51°E, 39.66°N | |||
D06 | Beijuma River | Distributed in patches at the Beijing border of the North Juma River Estuary | 3.30 | 0.51 | NA | 115.76°E, 39.53°N | |||
Chaobai River System | 196.83 | 30.52 | |||||||
C01 | Qinglong Gorge | Sporadically distributed from the upper reaches of Qinglong Gorge to Baiquan Mountain | 0.06 | 0.01 | 4x | 116.66°E, 40.48°N | |||
C02 | Yanqi Lake | Artificial reed landscape at the northwest corner of the lake | 0.83 | 0.13 | 8x | 116.60°E, 40.40°N | |||
C03 | Chao River | Distributed in patches about 7 km along the river near Miyun Service Area of Dachang Expressway | 38.23 | 5.93 | 8x/4x | 116.94°E, 40.40°N | |||
C04 | The estuary of Chaobai River | Upper reaches of Chao River and Bai River cross estuary | 7.08 | 1.10 | 8x | 116.83°E, 40.35°N | |||
C05 | Huai River | About 4.5 km from Huairou Reservoir to Yanqi River junction | 10.83 | 1.68 | 8x | 116.63°E, 40.31°N | |||
C06 | Chaobai River Bridge | Piled up along the bank of Fuxing Bridge/Fengbo Bridge/Chaobai River Bridge in Shunping Road | 18.94 | 2.94 | NA | 116.69°E, 40.12°N | |||
C07 | Hanshiqiao Wetland Park | Distributed in pieces of the core area, buffer zone and recovery area | 83.95 | 13.02 | 8x | 116.80°E, 40.12°N | |||
C08 | Binhe Forest Park | Distributed along the north and south banks of Chaobai River | 36.91 | 5.72 | NA | 116.72°E, 40.11°N | |||
North Canal Water System | 82.91 | 12.86 | |||||||
B01 | Lily Reservoir | Distributed in upstream area of the reservoir | 0.05 | 0.01 | 8x | 116.38°E, 40.32°N | |||
B02 | Taoyukou Reservoir | Distributed in periphery and upstream areas of the east and west sides of the reservoir | 9.46 | 1.47 | 8x | 116.45°E, 40.24°N | |||
B03 | Wenyu River | Scattered along the middle and upper banks of Wenyu River | 0.21 | 0.03 | NA | 116.42°E, 40.15°N | |||
B04 | Shahezha Park | Distributed in patches in the west bank of the lake in the park | 0.34 | 0.05 | 8x | 116.31°E, 40.13°N | |||
Water system | Distribution location | Distribution description | Area (hm2) | Proportion (%) | Ploidy level | Origin | |||
B05 | Cuihu Wetland Park | Uneven distribution on the wet land in protected areas and open areas | 45.38 | 7.04 | 8x | 116.19°E, 40.11°N | |||
B06 | Shangzhuang Reservoir | Evenly distributed along the bank of Shangzhuang Reservoir and scattered along the downstream bank | 0.81 | 0.13 | 8x/4x | 116.21°E, 40.11°N | |||
B07 | Nansha River | Discontinuous distribution in the 10 km section near Daoxiang Lake | 8.29 | 1.29 | 8x | 116.15°E, 40.10°N | |||
B08 | Olympic Forest Park | Distributed at the west side of Wetland in Southern District and the east side around the lake | 5.04 | 0.78 | 8x/4x | 116.39°E, 40.01°N | |||
B09 | Summer Palace | Mixed distribution of calamus on the shore near Zaojiantang site | 0.12 | 0.02 | NA | 116.27°E, 39.99°N | |||
B10 | Grand Canal Forest Park | Distributed on the semi-arid coastal wetlands in popular reeds | 6.51 | 1.01 | NA | 116.75°E, 39.87°N | |||
B11 | Nanhaizi Park | Distribution of small pieces of lakeshore in the park | 6.70 | 1.04 | 8x/4x | 116.47°E, 39.77°N | |||
Jiyun River System | 2.37 | 0.37 | |||||||
J01 | Ju River and Ru River | Sporadically distributed at the confluence of the Ru River and the Ju River | 2.03 | 0.31 | NA | 117.06°E, 40.11°N | |||
J02 | Jinji River | The junction of Jinji River and Yanghe River to the vicinity of Yingcheng Village | 0.34 | 0.05 | NA | 117.02°E, 40.08°N |
表1 北京地区芦苇的分布地点、面积和染色体倍性
Table 1 The distribution, area and ploidy level of Phragmites australis in Beijing
Water system | Distribution location | Distribution description | Area (hm2) | Proportion (%) | Ploidy level | Origin | |||
---|---|---|---|---|---|---|---|---|---|
Yongding River System | 304.11 | 47.16 | |||||||
Y01 | Weishui River | Distributed at both sides of the west of the Weishui River Tunnel passes th- rough the World Horticultural, exposition to Yankang Road | 5.14 | 0.80 | NA | 115.95°E, 40.45°N | |||
Y02 | Guanting Reservoir (in Beijing) | Scattered along the bank about 15 km west of the Guanting Bridge | 0.21 | 0.03 | 8x/4x | 115.87°E, 40.44°N | |||
Y03 | Wild Duck Lake National Wetland Park | Distributed in patches in the core area, buffer zone, and test area | 257.40 | 39.92 | 8x | 115.86°E, 40.41°N | |||
Water system | Distribution location | Distribution description | Area (hm2) | Proportion (%) | Ploidy level | Origin | |||
Y04 | Shanxia Section of Yongding River | Distributed along the river bank | 8.31 | 1.29 | NA | 116.09°E, 39.99°N | |||
Y05 | Sanjiadian Rush Wetland Park | Distributed in patches | 4.60 | 0.71 | 8x | 116.10°E, 39.97°N | |||
Y06 | Lianshi Lake Park | Distributed along both banks of the river | 2.12 | 0.33 | 8x | 116.15°E, 39.90°N | |||
Y07 | Yuanbo Lake Wetland | Distributed in patches | 16.30 | 2.53 | NA | 116.21°E, 39.87°N | |||
Y08 | Ludi Park | Distributed in patches along the coast | 9.71 | 1.51 | NA | 116.22°E, 39.84°N | |||
Y09 | Niantan Park | Distributed around the shore of a lake in the park | 0.32 | 0.05 | NA | 116.31°E, 39.71°N | |||
Daqing River System | 58.63 | 9.09 | |||||||
D01 | Chongqing Reservoir | Distributed in patches in the southwest corner of the reservoir | 13.17 | 2.04 | NA | 116.08°E, 39.79°N | |||
D02 | Jiuzi River | Distributed in the upper reaches of Xiaoqing River | 5.42 | 0.84 | 8x | 116.19°E, 39.75°N | |||
D03 | Xiaoqing River | Distributed in patches along the river from the south of Shuisi Road to the junction of Hedgehog River | 20.02 | 3.10 | 8x/4x | 116.20°E, 39.72°N | |||
D04 | Dashi River | Distributed along the north and south rivers of Jingzhou Road | 16.41 | 2.54 | NA | 116.03°E, 39.70°N | |||
D05 | Juma River | Sporadic distribution from Shidu to Yesanpo | 0.31 | 0.05 | 8x | 115.51°E, 39.66°N | |||
D06 | Beijuma River | Distributed in patches at the Beijing border of the North Juma River Estuary | 3.30 | 0.51 | NA | 115.76°E, 39.53°N | |||
Chaobai River System | 196.83 | 30.52 | |||||||
C01 | Qinglong Gorge | Sporadically distributed from the upper reaches of Qinglong Gorge to Baiquan Mountain | 0.06 | 0.01 | 4x | 116.66°E, 40.48°N | |||
C02 | Yanqi Lake | Artificial reed landscape at the northwest corner of the lake | 0.83 | 0.13 | 8x | 116.60°E, 40.40°N | |||
C03 | Chao River | Distributed in patches about 7 km along the river near Miyun Service Area of Dachang Expressway | 38.23 | 5.93 | 8x/4x | 116.94°E, 40.40°N | |||
C04 | The estuary of Chaobai River | Upper reaches of Chao River and Bai River cross estuary | 7.08 | 1.10 | 8x | 116.83°E, 40.35°N | |||
C05 | Huai River | About 4.5 km from Huairou Reservoir to Yanqi River junction | 10.83 | 1.68 | 8x | 116.63°E, 40.31°N | |||
C06 | Chaobai River Bridge | Piled up along the bank of Fuxing Bridge/Fengbo Bridge/Chaobai River Bridge in Shunping Road | 18.94 | 2.94 | NA | 116.69°E, 40.12°N | |||
C07 | Hanshiqiao Wetland Park | Distributed in pieces of the core area, buffer zone and recovery area | 83.95 | 13.02 | 8x | 116.80°E, 40.12°N | |||
C08 | Binhe Forest Park | Distributed along the north and south banks of Chaobai River | 36.91 | 5.72 | NA | 116.72°E, 40.11°N | |||
North Canal Water System | 82.91 | 12.86 | |||||||
B01 | Lily Reservoir | Distributed in upstream area of the reservoir | 0.05 | 0.01 | 8x | 116.38°E, 40.32°N | |||
B02 | Taoyukou Reservoir | Distributed in periphery and upstream areas of the east and west sides of the reservoir | 9.46 | 1.47 | 8x | 116.45°E, 40.24°N | |||
B03 | Wenyu River | Scattered along the middle and upper banks of Wenyu River | 0.21 | 0.03 | NA | 116.42°E, 40.15°N | |||
B04 | Shahezha Park | Distributed in patches in the west bank of the lake in the park | 0.34 | 0.05 | 8x | 116.31°E, 40.13°N | |||
Water system | Distribution location | Distribution description | Area (hm2) | Proportion (%) | Ploidy level | Origin | |||
B05 | Cuihu Wetland Park | Uneven distribution on the wet land in protected areas and open areas | 45.38 | 7.04 | 8x | 116.19°E, 40.11°N | |||
B06 | Shangzhuang Reservoir | Evenly distributed along the bank of Shangzhuang Reservoir and scattered along the downstream bank | 0.81 | 0.13 | 8x/4x | 116.21°E, 40.11°N | |||
B07 | Nansha River | Discontinuous distribution in the 10 km section near Daoxiang Lake | 8.29 | 1.29 | 8x | 116.15°E, 40.10°N | |||
B08 | Olympic Forest Park | Distributed at the west side of Wetland in Southern District and the east side around the lake | 5.04 | 0.78 | 8x/4x | 116.39°E, 40.01°N | |||
B09 | Summer Palace | Mixed distribution of calamus on the shore near Zaojiantang site | 0.12 | 0.02 | NA | 116.27°E, 39.99°N | |||
B10 | Grand Canal Forest Park | Distributed on the semi-arid coastal wetlands in popular reeds | 6.51 | 1.01 | NA | 116.75°E, 39.87°N | |||
B11 | Nanhaizi Park | Distribution of small pieces of lakeshore in the park | 6.70 | 1.04 | 8x/4x | 116.47°E, 39.77°N | |||
Jiyun River System | 2.37 | 0.37 | |||||||
J01 | Ju River and Ru River | Sporadically distributed at the confluence of the Ru River and the Ju River | 2.03 | 0.31 | NA | 117.06°E, 40.11°N | |||
J02 | Jinji River | The junction of Jinji River and Yanghe River to the vicinity of Yingcheng Village | 0.34 | 0.05 | NA | 117.02°E, 40.08°N |
图2 北京地区小清河样地芦苇多态性分析 (A) 小清河样地全景图(6个芦苇克隆群体C1-C6分别用不同颜色的矩形虚线框标出); (B) 6个芦苇群体的株高和基径的相关性分析(灰色阴影部分为回归区间, 红色虚线为最佳回归曲线); (C) 芦苇多态性的主成分分析(依据表2中8项形态学指标绘制), 按照置信概率95%框选每种芦苇群体; (D) 芦苇小穗的代表性照片(bars=5 mm)
Figure 2 Polymorphism analysis of Phragmites australis in the Xiaoqing River plot (A) Panoramic view of the Xiaoqing River plot (six different reed clones C1-C6 are marked by rectangular dashed boxes of different colors); (B) Correlation analysis of height and base diameter of six different reed clones (The gray shaded part is the regression interval, and the red dotted line is the best regression curve); (C) Principal component analysis of polymorphism in the reed plot of Xiaoqing River (based on eight morphological indicators of six species of reed clones in Table 2), selecting each reed clone according to 95% confidence probability; (D) Representative photos of spikelets (bars=5 mm)
Phenotype | Mean | Maximum | Minimum | Standard deviation | Variation coefficient (%) |
---|---|---|---|---|---|
Height (m) | 2.74 | 4.25 | 1.34 | 0.75 | 27.48 |
Diameter (mm) | 9.02 | 15.93 | 3.56 | 2.77 | 30.76 |
Inflorescences length (cm) | 24.21 | 36.20 | 10.40 | 5.77 | 23.85 |
Inflorescences width (cm) | 5.92 | 17.08 | 1.39 | 3.70 | 62.55 |
Length of flag leaf (cm) | 31.57 | 53.10 | 15.40 | 7.06 | 22.37 |
Width of flag leaf (cm) | 1.46 | 2.51 | 0.51 | 0.46 | 31.31 |
Length of the sixth leaf (cm) | 39.41 | 62.30 | 15.30 | 14.19 | 36.02 |
Width of the sixth leaf (cm) | 2.82 | 4.98 | 1.31 | 0.86 | 30.63 |
表3 北京小清河样地芦苇克隆群体的形态多态性和变异系数(n=59)
Table 3 Morphological polymorphism and variation coefficient in Phragmites australis clone populations in Xiaoqing River plot, Beijing (n=59)
Phenotype | Mean | Maximum | Minimum | Standard deviation | Variation coefficient (%) |
---|---|---|---|---|---|
Height (m) | 2.74 | 4.25 | 1.34 | 0.75 | 27.48 |
Diameter (mm) | 9.02 | 15.93 | 3.56 | 2.77 | 30.76 |
Inflorescences length (cm) | 24.21 | 36.20 | 10.40 | 5.77 | 23.85 |
Inflorescences width (cm) | 5.92 | 17.08 | 1.39 | 3.70 | 62.55 |
Length of flag leaf (cm) | 31.57 | 53.10 | 15.40 | 7.06 | 22.37 |
Width of flag leaf (cm) | 1.46 | 2.51 | 0.51 | 0.46 | 31.31 |
Length of the sixth leaf (cm) | 39.41 | 62.30 | 15.30 | 14.19 | 36.02 |
Width of the sixth leaf (cm) | 2.82 | 4.98 | 1.31 | 0.86 | 30.63 |
图3 芦苇新变型的鉴定 (A) 自然生境中的金条芦苇; (B) 金条芦苇的小穗(bars=5 mm); (C) 金条芦苇细胞核的流式细胞分析结果; (D) 金条芦苇和变叶芦竹叶绿体基因片段(从trnG-UCC到trnT-GGU)大小的差异, 变叶芦竹(Ad)产生607 bp的条带; 芦苇产生1069 bp的条带(Pa为小清河芦苇克隆C6, DR和SR是河西走廊生长的沙丘芦苇和沼泽芦苇, G1-G3均为金条芦苇)(M: 分子标记); (E) 金条芦苇模式标本
Figure 3 Identification of a new form of Phragmites australis (A) Phragmites australis f. Goldstripe in natural habitats; (B) Spikelets of goldstripe reed (bars=5 mm); (C) Identification of ploidy level by the flow cytometric analysis on the goldstripe reed nuclei; (D) The size difference of a DNA fragment (from trnG-UCC to trnT-GGU) as revealed by PCR between goldstripe reed and Arundo donax var. versicolor, A. donax (Ad) produced a 607 bp band; common reeds and goldstripe reed produced 1069 bp bands (Pa indicates Xiaoqinghe reed C6, DR and SR indicate desert dune reeds and swamp reeds growing in the Hexi Corridor, and G1-G3 are all goldstripe reeds)(M: Molecular marker); (E) A type specimen of goldstripe reed
Sample | Height (m) | Diameter (mm) | Seed setting rate (%) | Flowering time |
---|---|---|---|---|
Common reed | 3.6±0.2 | 8.70±0.80 | 16.8±7.1 | Mid-August |
Goldstripe reed | 2.8±0.2 | 7.42±0.75 | 0.6±0.2 | Early September |
表4 北京翠湖湿地普通芦苇和金条芦苇表型差异分析(平均值±标准差, n≥16)
Table 4 Phenotype comparison of common reed and goldstripe reed in Cuihu Wetland Park, Beijing (means±SD, n≥16)
Sample | Height (m) | Diameter (mm) | Seed setting rate (%) | Flowering time |
---|---|---|---|---|
Common reed | 3.6±0.2 | 8.70±0.80 | 16.8±7.1 | Mid-August |
Goldstripe reed | 2.8±0.2 | 7.42±0.75 | 0.6±0.2 | Early September |
[1] | 程杰 (2013). 论中国古代芦苇资源的自然分布、社会利用和文化反映. 阅江学刊 5, 119-134. |
[2] | 郭春秀, 李发明, 张莹花, 刘淑娟, 朱淑娟, 张大彪 (2012). 河西走廊芦苇草地资源特征及其保护利用. 草原与草坪 32(4), 93-96. |
[3] | 李建国, 李贵宝, 刘芳, 王殿武, 陈桂珅 (2004). 白洋淀芦苇资源及其生态功能与利用. 南水北调与水利科技 2(5), 37-40. |
[4] | 张兵 (2008). 谈芦苇湿地的价值. 现代农业科技 (12), 347. |
[5] | 张承烈, 陈国仓 (1991). 河西走廊不同生态类型芦苇的气体交换特点的研究. 生态学报 11(3), 250-255. |
[6] | Ahmed MJ (2017). Application of raw and activated Phragmites australis as potential adsorbents for wastewater treatments. Ecol Eng 102, 262-269. |
[7] | An JX, Wang Q, Yang J, Liu JQ (2012). Phylogeographic analyses of Phragmites australis in China: native distribution and habitat preference of the haplotype that invaded North America. J Syst Evol 50, 334-340. |
[8] | Burdick DM, Konisky RA (2003). Determinants of expansion for Phragmites australis, common reed, in natural and impacted coastal marshes. Estuaries 26, 407-416. |
[9] | Clayton WD (1967). Studies in the Gramineae: XIV. Kew Bull 21, 111-117. |
[10] | Clevering OA, Lissner J (1999). Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat Bot 64, 185-208. |
[11] |
Cui SX, Hu J, Yang B, Shi L, Huang F, Tsai SN, Ngai SM, He YK, Zhang JH (2009). Proteomic characterization of Phragmites communis in ecotypes of swamp and desert dune. Proteomics 9, 3950-3967.
DOI URL PMID |
[12] | Cui SX, Wang W, Zhang CL (2002). Plant regeneration from callus cultures in two ecotypes of reed ( Phragmites communis Trinius). In Vitro Cell Dev Biol Plant 38, 325-329. |
[13] |
Doležel J, Greilhuber J, Suda J (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2, 2233-2244.
URL PMID |
[14] | Dykyjová D, Pazourková Z (1979). A diploid form of Phragmites communis, as a possible result of cytogenetical response to ecological stress. Folia Geobot Phytotax 14, 113-120. |
[15] |
Eller F, Skálová H, Caplan JS, Bhattarai GP, Burger MK, Cronin JT, Guo WY, Guo X, Hazelton ELG, Kettenring KM, Lambertini C, McCormick MK, Meyerson LA, Mozdzer TJ, Pyšek P, Sorrell BK, Whigham DF, Brix H (2017). Cosmopolitan species as models for ecophysiological responses to global change: the common reed Phragmites australis. Front Plant Sci 8, 1833.
URL PMID |
[16] | Gorenflot R (1986). Degrés et niveaux de la variation du nombre chromosomique chez Phragmites australis (Cav.) Trin. ex Steud. Veröff. Geobot. Inst. ETH, Stiftung Rübel. Zürich 87, 53-65. |
[17] | Haslam SM (1970). Variation of population type in Phragmites communis Trin. Ann Bot 34, 147-158. |
[18] | Haslam SM (1971). Community regulation in Phragmites communis Trin. I. monodominant stands. J Ecol 59, 65-73. |
[19] |
Li L, Chen XD, Shi L, Wang CJ, Fu B, Qiu TH, Cui SX (2017). A proteome translocation response to complex desert stress environments in perennial Phragmites sympatric ecotypes with contrasting water availability. Front Plant Sci 8, 511.
DOI URL PMID |
[20] | Meyerson LA, Cronin JT, Bhattarai GP, Brix H, Lambertini C, Lučanová M, Rinehart S, Suda J, Pyšek P (2016). Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interactions with herbivores? Biol Invasions 18, 2531-2549. |
[21] | Meyerson LA, Saltonstall K, Chambers RM, Silliman BR, Bertness MD, Strong D (2009). Phragmites australis in eastern North America: a historical and ecological perspective In: Silliman BR, Grosholz ED, Bertness MD, eds. Human Impacts on Salt Marshes: A Global Perspective. Berkeley: University of California Press. pp. 57-82. |
[22] | Porebski S, Bailey LG, Baum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15, 8-15. |
[23] | Raicu P, Staicu S, Stoian V, Roman T (1972). The Phragmites communis Trin. chromosome complement in the Danube delta. Hydrobiologia 39, 83-89. |
[24] | Saltonstall K (2001). A set of primers for amplification of noncoding regions of chloroplast DNA in the grasses. Mol Ecol Notes 1, 76-78. |
[25] |
Saltonstall K (2002). Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99, 2445-2449.
DOI URL PMID |
[26] |
Saltonstall K (2003). Microsatellite variation within and among North American lineages of Phragmites australis. Mol Ecol 12, 1689-1702.
URL PMID |
[27] | Saltonstall K (2016). The naming of Phragmites haplotypes. Biol Invasions 18, 2433-2441. |
[28] |
Taberlet P, Gielly L, Pautou G, Bouvet J (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17, 1105-1109.
URL PMID |
[29] | Tanaka TST, Irbis C, Inamura T (2017). Phylogenetic analyses of Phragmites spp. in southwest China identified two lineages and their hybrids. Plant Syst Evol 303, 699-707. |
[30] |
Wang WS, Mauleon R, Hu ZQ, Chebotarov D, Tai SS, Wu ZC, Li M, Zheng TQ, Fuentes RR, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis KC, Xu JL, Sun C, Fu BY, Zhang HL, Gao YM, Zhao XQ, Shen F, Cui X, Yu H, Li ZC, Chen ML, Detras J, Zhou YL, Zhang XY, Zhao Y, Kudrna D, Wang CC, Li R, Jia B, Lu JY, He XC, Dong ZT, Xu JB, Li YH, Wang M, Shi JX, Li J, Zhang DB, Lee S, Hu WS, Poliakov A, Dubchak I, Ulat VJ, Borja FN, Mendoza JR, Ali J, Li J, Gao Q, Niu YC, Yue Z, Naredo MEB, Talag J, Wang XQ, Li JJ, Fang XD, Yin Y, Glaszmann JC, Zhang JW, Li JY, Hamilton RS, Wing RA, Ruan J, Zhang GY, Wei CC, Alexandrov N, McNally KL, Li ZK, Leung H (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43-49.
DOI URL PMID |
[1] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[2] | 孟敬慈, 王国栋, 曹光兰, 胡楠林, 赵美玲, 赵延彤, 薛振山, 刘波, 朴文华, 姜明. 中国芦苇沼泽植物物种丰富度分布格局及其驱动因素[J]. 生物多样性, 2024, 32(2): 23194-. |
[3] | 裘天航, 王安安, 李利, 王迎春, 崔继鹏, 王紫瑶, 王蕊, 崔素霞. 2种生态型芦苇RCA基因特征及表达特异性[J]. 植物学报, 2023, 58(5): 687-700. |
[4] | 史欢欢, 雪穷, 于振林, 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(1): 77-87. |
[5] | 张慧, 梁红凯, 智慧, 张林林, 刁现民, 贾冠清. 谷子β-胡萝卜素异构酶家族基因的表达与变异分析[J]. 植物学报, 2023, 58(1): 34-50. |
[6] | 魏和平, 芦涛, 贾绮玮, 邓飞, 朱浩, 岂泽华, 王玉玺, 叶涵斐, 殷文晶, 方媛, 穆丹, 饶玉春. 水稻抽穗期QTL定位及候选基因分析[J]. 植物学报, 2022, 57(5): 588-595. |
[7] | 蔡新宇, 毛晓伟, 赵毅强. 家养动物驯化起源的研究方法与进展[J]. 生物多样性, 2022, 30(4): 21457-. |
[8] | 宋佳, 职铭阳, 陈强, 李玥莹, 吴隆坤, 农保选, 李丹婷, 逄洪波, 郑晓明. 水稻耐寒基因CTB4a的核苷酸多样性及区域适应性[J]. 生物多样性, 2022, 30(2): 21258-. |
[9] | 张雅楠, 黄蕾, 李佳彬, 张雷, 党振华. 基于转录组的阿拉善地区多枝柽柳多态Genic-SSRs的识别与开发[J]. 植物学报, 2021, 56(4): 433-442. |
[10] | 赵睿, 卜红梅, 宋献方, 高融瑾. 再生水补给河道内芦苇的光谱特征及其对水体氮和磷含量的响应[J]. 植物学报, 2020, 55(6): 666-676. |
[11] | 莫日根高娃, 商辉, 刘保东, 康明, 严岳鸿. 一个种还是多个种? 简化基因组及其形态学证据揭示中国白桫椤植物的物种多样性分化[J]. 生物多样性, 2019, 27(11): 1196-1204. |
[12] | 郭瑞, 周际, 刘琪, 顾峰雪. 松嫩退化草地芦苇不同叶位叶片营养元素代谢特征[J]. 植物生态学报, 2018, 42(7): 734-740. |
[13] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
[14] | 杨艳, 张海琴, 凡星, 沙莉娜, 康厚扬, 王益, 周永红. 偃麦草属植物醇溶蛋白和谷蛋白多态性及系统学研究[J]. 植物学报, 2017, 52(5): 579-589. |
[15] | 黄建峰, 李朗, 李捷. 樟属植物ITS序列多态性分析[J]. 植物学报, 2016, 51(5): 609-619. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||