植物学报 ›› 2019, Vol. 54 ›› Issue (3): 343-349.DOI: 10.11983/CBB18106
收稿日期:
2018-04-26
接受日期:
2018-12-10
出版日期:
2019-07-01
发布日期:
2019-11-24
通讯作者:
包颖
基金资助:
Xia Zhang1,Xiang Jing1,Guangcai Zhou2,Ying Bao1,*()
Received:
2018-04-26
Accepted:
2018-12-10
Online:
2019-07-01
Published:
2019-11-24
Contact:
Ying Bao
摘要:
淀粉作为主要的碳水化合物在储藏能量方面发挥至关重要的作用。颗粒结合型淀粉合酶(GBSS)与直链淀粉的合成息息相关。尽管该酶的编码基因已在许多栽培植物中被分离和确定, 但有关它们在作物野生近缘种中的序列分歧和表达的研究却相对较少。该研究以药用野生稻(Oryza officinalis)为研究对象, 定性和定量地分析了GBSS编码基因的序列特点、与其它植物同源基因的进化关系以及在叶和种子中的表达情况。系统发育分析表明, 该酶在禾本科植物中分别由GBSSI和GBSSII基因编码。在药用野生稻中, 这2种基因所编码蛋白的氨基酸序列一致性为62%, 并且它们在不同器官内呈现时空分化表达, 其中GBSSI在种子中超强表达, GBSSII则主要在叶片表达。
张霞,景翔,周光才,包颖. 药用野生稻GBSS基因的系统发育及组织特异性表达. 植物学报, 2019, 54(3): 343-349.
Xia Zhang,Xiang Jing,Guangcai Zhou,Ying Bao. Phylogeny and Tissue-specific Expression of the GBSS Genes in Oryza officinalis. Chinese Bulletin of Botany, 2019, 54(3): 343-349.
Gene | Primer name | Primer sequence (5'-3') |
---|---|---|
GBSSI | GBSSI-F | AACGTGGCTGCTCCTTGAA |
GBSSI-R | TTGGCAATAAGCCACACACA | |
GBSSII | GBSSII-F | AGGCATCGAGGGTGAGGAG |
GBSSII-R | CCATCTGGCCCACATCTCTA |
表1 GBSSI和GBSSII的引物序列
Table 1 Primer sequences of GBSSI and GBSSII
Gene | Primer name | Primer sequence (5'-3') |
---|---|---|
GBSSI | GBSSI-F | AACGTGGCTGCTCCTTGAA |
GBSSI-R | TTGGCAATAAGCCACACACA | |
GBSSII | GBSSII-F | AGGCATCGAGGGTGAGGAG |
GBSSII-R | CCATCTGGCCCACATCTCTA |
Plants | Gene (GenBank/UniProt No.) | Sequence identity (%) | |
---|---|---|---|
Oryza officinalis | |||
GBSSI | GBSSII | ||
Oryza sativa subsp. japonica | GBSSI (XP_025882300.1) | 95.22 | 60.35 |
GBSSII (XP_015647210.1) | 62.30 | 96.72 | |
O. sativa subsp. indica | GBSSI (AAN77100.1) | 97.87 | 62.30 |
GBSSII (ACY56079.1) | 62.46 | 97.04 | |
Leersia perrieri | GBSSI (A0A0D9WLF6) * | 93.01 | 62.15 |
GBSSII (A0A0D9WED4) * | 58.44 | 85.62 | |
Zizania latifolia | GBSSI (ASSH01051725.1) ** | 90.80 | 62.01 |
GBSSII (ASSH01023543.1) ** | 59.46 | 87.47 | |
Brachypodium distachyon | GBSSI (XP_003557139.1) | 79.31 | 61.16 |
GBSSII (XP_003569238.1) | 60.33 | 85.43 | |
Hordeum vulgare | GBSSI (BAC41202.1) | 81.97 | 60.76 |
GBSSII (BAJ99426.1) | 61.85 | 86.12 | |
Setaria italica | GBSSI (AGW27658.1) | 86.72 | 61.90 |
GBSSII (XP_004956034.1) | 62.40 | 87.34 | |
Sorghum bicolor | GBSSI (XP_002436418.1) | 82.52 | 61.90 |
GBSSII (XP_002461889.1) | 62.62 | 86.18 | |
Triticum aestivum | GBSSI (XP_020146905.1) | 81.37 | 60.36 |
GBSSII (AAG27624.1) | 61.79 | 86.09 | |
Zea mays | GBSSI (NP_001105001) | 82.08 | 62.13 |
GBSSII (NP_001334833) | 62.36 | 85.88 | |
Musa acuminata | GBSS1 (KF512020.1) | 66.39 | 65.35 |
GBSS2 (KF512021.1) | 67.96 | 63.99 | |
GBSS3 (KF512023.1) | 63.93 | 62.91 | |
Arabidopsis thaliana | GBSS (XP_020866584.1) | 62.48 | 63.88 |
Gossypium raimondii | GBSS1 (XP_012474755.1) | 63.89 | 66.01 |
GBSS2 (XP_012439861.1) | 63.11 | 66.77 | |
GBSS3 (XP_012486622.1) | 62.75 | 64.01 | |
Solanum lycopersicum | GBSS (NP_001311457.1) | 67.05 | 62.03 |
Carica papaya | GBSS (XP_021900468.1) | 65.91 | 66.45 |
S. tuberosum | GBSS (XP_006343763.1) | 62.89 | 67.27 |
Vitis vinifera | GBSS1 (XP_010660257.1) | 65.52 | 66.23 |
GBSS2 (XP_019081062.1) | 64.07 | 67.76 | |
Amborella trichopoda | GBSS (XP_006837847.1) | 62.81 | 66.17 |
Chlamydomonas reinhardtii | GBSS (XP_001697117.1) | 47.79 | 47.05 |
表2 药用野生稻和其它植物的GBSS氨基酸序列一致度
Table 2 Amino acid sequence identities of GBSSs between Oryza officinalis and other plants
Plants | Gene (GenBank/UniProt No.) | Sequence identity (%) | |
---|---|---|---|
Oryza officinalis | |||
GBSSI | GBSSII | ||
Oryza sativa subsp. japonica | GBSSI (XP_025882300.1) | 95.22 | 60.35 |
GBSSII (XP_015647210.1) | 62.30 | 96.72 | |
O. sativa subsp. indica | GBSSI (AAN77100.1) | 97.87 | 62.30 |
GBSSII (ACY56079.1) | 62.46 | 97.04 | |
Leersia perrieri | GBSSI (A0A0D9WLF6) * | 93.01 | 62.15 |
GBSSII (A0A0D9WED4) * | 58.44 | 85.62 | |
Zizania latifolia | GBSSI (ASSH01051725.1) ** | 90.80 | 62.01 |
GBSSII (ASSH01023543.1) ** | 59.46 | 87.47 | |
Brachypodium distachyon | GBSSI (XP_003557139.1) | 79.31 | 61.16 |
GBSSII (XP_003569238.1) | 60.33 | 85.43 | |
Hordeum vulgare | GBSSI (BAC41202.1) | 81.97 | 60.76 |
GBSSII (BAJ99426.1) | 61.85 | 86.12 | |
Setaria italica | GBSSI (AGW27658.1) | 86.72 | 61.90 |
GBSSII (XP_004956034.1) | 62.40 | 87.34 | |
Sorghum bicolor | GBSSI (XP_002436418.1) | 82.52 | 61.90 |
GBSSII (XP_002461889.1) | 62.62 | 86.18 | |
Triticum aestivum | GBSSI (XP_020146905.1) | 81.37 | 60.36 |
GBSSII (AAG27624.1) | 61.79 | 86.09 | |
Zea mays | GBSSI (NP_001105001) | 82.08 | 62.13 |
GBSSII (NP_001334833) | 62.36 | 85.88 | |
Musa acuminata | GBSS1 (KF512020.1) | 66.39 | 65.35 |
GBSS2 (KF512021.1) | 67.96 | 63.99 | |
GBSS3 (KF512023.1) | 63.93 | 62.91 | |
Arabidopsis thaliana | GBSS (XP_020866584.1) | 62.48 | 63.88 |
Gossypium raimondii | GBSS1 (XP_012474755.1) | 63.89 | 66.01 |
GBSS2 (XP_012439861.1) | 63.11 | 66.77 | |
GBSS3 (XP_012486622.1) | 62.75 | 64.01 | |
Solanum lycopersicum | GBSS (NP_001311457.1) | 67.05 | 62.03 |
Carica papaya | GBSS (XP_021900468.1) | 65.91 | 66.45 |
S. tuberosum | GBSS (XP_006343763.1) | 62.89 | 67.27 |
Vitis vinifera | GBSS1 (XP_010660257.1) | 65.52 | 66.23 |
GBSS2 (XP_019081062.1) | 64.07 | 67.76 | |
Amborella trichopoda | GBSS (XP_006837847.1) | 62.81 | 66.17 |
Chlamydomonas reinhardtii | GBSS (XP_001697117.1) | 47.79 | 47.05 |
图2 利用氨基酸序列构建的淀粉合酶的最大似然性系统发育树分支旁的数字代表自展支持率。
Figure 2 A maximum likelihood phylogenetic tree of the GBSS based on amino acid sequences Numbers near branches indicate bootstrap value.
图3 GBSSI和GBSSII在药用野生稻叶和种子中的相对表达(A), (B) GBSS基因在叶中的RT-PCR和qRT-PCR扩增结果; (C), (D) GBSS基因在种子中的RT-PCR和qRT-PCR扩增结果。
Figure 3 Relative expression of GBSSI and GBSSII in leaves and seeds of Oryza officinalis(A), (B) Amplification results of RT-PCR and qRT-PCR for GBSS genes in leaves; (C), (D) Amplification results of RT-PCR and qRT-PCR for GBSS genes in seeds.
[1] |
包颖, 杜家潇, 景翔, 徐思 (2015). 药用野生稻叶中淀粉合成酶基因家族的序列分化和特异表达. 植物学报 50, 683-690.
DOI URL |
[2] |
陈凤花, 王琳, 胡丽华 (2005). 实时荧光定量RT-PCR内参基因的选择. 临床检验杂志 23, 393-395.
DOI URL |
[3] |
顾燕娟 (2006). 支链淀粉合成相关基因等位基因间的差异对稻米淀粉理化特性的影响. 硕士论文. 扬州: 扬州大学. pp. 3-8.
DOI URL |
[4] |
王倩, 孙文静, 包颖 (2017). 植物颗粒结合淀粉合酶GBSS基因家族的进化. 植物学报 52, 179-187.
DOI URL |
[5] |
杨学明 (2003). 几个重复序列在不同稻种中的分布及其与稻种分化关系的研究. 硕士论文. 扬州: 扬州大学. pp. 6-10.
DOI URL |
[6] |
张鹏 (2008). 抑制淀粉分支酶类基因表达对稻米品质影响的研究. 硕士论文. 扬州: 扬州大学. pp. 3-8.
DOI URL |
[7] | Bao Y, Xu S, Jing X, Meng L, Qin ZY (2015). De novo assembly and characterization ofOryza officinalis leaf transcriptome by using RNA-seq. Biomed Res Int 2015, 982065. |
[8] |
Cheng J, Khan MA, Qiu WM, Li J, Zhou H, Zhang Q, Guo WW, Zhu TT, Peng JH, Sun FJ, Li SH, Korban SS, Han YP (2012). Diversification of genes encoding granulebound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events.PLoS One 7, e30088.
DOI URL PMID |
[9] |
Dian WM, Jiang HW, Wu P (2005). Evolution and expression analysis of starch synthase III and IV in rice.J Exp Bot 56, 623-632.
DOI URL PMID |
[10] |
Gouy M, Guindon S, Gascuel O (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building.Mol Biol Evol 27, 221-224.
DOI URL PMID |
[11] |
Guindon S, Gascuel O (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Syst Biol 52, 696-704.
DOI URL PMID |
[12] |
Ohdan T, Francisco Jr PB, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005). Expression profiling of genes involved in starch synthesis in sink and source organs of rice.J Exp Bot 56, 3229-3244.
DOI URL PMID |
[13] | Shure M, Wessler S, Fedoroff N (1983). Molecular identification and isolation of thewaxy locus in maize. Cell 35, 225-233. |
[14] | Van Harsselaar JK, Lorenz J, Senning M, Sonnewald U, Sonnewald S (2017). Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC Genomics 18, 37. |
[15] |
Vrinten PL, Nakamura T (2000). Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues.Plant Physiol 122, 255-264.
DOI URL |
[16] | Wang ZY, Wu ZL, Xing YY, Zheng FG, Guo XL, Zhang WG, Hong MM (1990). Nucleotide sequence of ricewaxy gene. Nucleic Acids Res 18, 5898. |
[1] | 李景 王欣 王振华 王斌 王成章 邓美凤 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(预发表): 0-0. |
[2] | 袁锋 王艳艳 李茂瑾 江传阳 刘贺娜 李坤玲 洪滔 吴承祯 陈灿. 不同海岸距离上木麻黄凋落叶金属元素含量及归还量动态特征[J]. 植物生态学报, 2020, 44(预发表): 0-0. |
[3] | 梁栋栋, 彭杰, 高改利, 洪欣, 周守标, 储俊, 王智. 鹞落坪落叶阔叶林蔷薇科主要树种的空间分布格局及种间关联性[J]. 生物多样性, 2020, 28(8): 1008-1017. |
[4] | 赵万义, 刘忠成, 叶华谷, 王蕾, 陈功锡, 刘克明, 詹选怀, 廖文波. 罗霄山脉种子植物区系及其南北分化特征[J]. 生物多样性, 2020, 28(7): 842-853. |
[5] | 杨锡福, 张洪茂, 张知彬. 植物大年结实及其与动物贮食行为之间的关系[J]. 生物多样性, 2020, 28(7): 821-832. |
[6] | 李诗奇 张彦浩 李政 张沛东. 大叶藻对氮磷营养盐的吸收动力学特征[J]. 植物生态学报, 2020, 44(7): 0-0. |
[7] | 荀彦涵 邸雪颖 金光泽. 典型阔叶红松林主要树种叶性状的垂直变异及经济策略[J]. 植物生态学报, 2020, 44(7): 0-0. |
[8] | 李慢如, 张玲. 桑寄生植物繁殖物候研究概述[J]. 生物多样性, 2020, 28(7): 833-841. |
[9] | 王春成, 马松梅, 张丹, 王绍明. 柴达木野生黑果枸杞的空间遗传结构[J]. 植物生态学报, 2020, 44(6): 661-668. |
[10] | 秦天姿, 任安芝, 樊晓雯, 高玉葆. 内生真菌种类和母本基因型对内生真菌-禾草共生体叶形状和叶面积的影响[J]. 植物生态学报, 2020, 44(6): 654-660. |
[11] | 刘建福, 陈育才, 王文建, 王河川, 蔡金福, 王明元, 李丹丹, 张斌, 黄昆. 航天搭载对武夷名丛相关生理及生长特性的影响[J]. 植物学报, 2020, 55(5): 564-572. |
[12] | 刘建飞, 刘炎, 刘克俭, 池阳, 霍志发, 霍永洪, 由香玲. 长白落叶松体胚发生再生体系优化[J]. 植物学报, 2020, 55(5): 605-612. |
[13] | 车明哲, 王亚军, 马创新, 漆小泉. 大麦抗叶锈病慢锈性鉴定技术及抗性评价方法[J]. 植物学报, 2020, 55(5): 573-576. |
[14] | 贾梦可,郭屹立,李冬兴,王斌,向悟生,王爱龙,刘晟源,丁涛,黄甫昭,文淑均,陆树华,李先琨. 桂西南喀斯特季节性雨林叶凋落量的时空动态[J]. 生物多样性, 2020, 28(4): 455-462. |
[15] | 张楠,刘自广,孙世臣,刘圣怡,林建辉,彭疑芳,张晓旭,杨贺,岑曦,吴娟. 拟南芥AtR8 lncRNA对盐胁迫响应及其对种子萌发的调节作用[J]. 植物学报, 2020, 55(4): 421-429. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||