植物学报 ›› 2018, Vol. 53 ›› Issue (6): 829-839.DOI: 10.11983/CBB18003
张登, 李景剑, 张梦洁, 包钰韬, 杨霄, 徐武云, 欧阳昆唏, 陈晓阳*()
收稿日期:
2018-01-03
出版日期:
2018-11-01
发布日期:
2018-12-05
通讯作者:
陈晓阳
作者简介:
作者简介:白克智, 1959年开始在中国科学院植物研究所工作, 先后任助理研究员、研究员, 长期从事植物生长发育及其调控的研究。1986年,其主持的“满江红生物学特性研究”荣获中国科学院科技进步二等奖。曾任《植物生理学报》编委、《植物学报》常务编委、中国植物生长调节剂协会主任等职。
基金资助:
Zhang Deng, Li Jingjian, Zhang Mengjie, Bao Yutao, Yang Xiao, Xu Wuyun, Ouyang Kunxi, Chen Xiaoyang*()
Received:
2018-01-03
Online:
2018-11-01
Published:
2018-12-05
Contact:
Chen Xiaoyang
摘要: 为筛选黄梁木(Neolamarckia cadamba)实时定量PCR最佳内参基因, 该研究以黄梁木的根、芽、叶、花、果、皮及形成层为材料, 利用RT-qPCR技术对ACT、CAC、CYP和EF1α等21个管家基因家族43个候选内参基因进行表达量分析, 并利用geNorm、NormFinder和BestKeeper软件进行内参基因稳定性分析。geNorm的分析结果显示, UPL基因的稳定性最高(M=0.443), UBQ基因的稳定性最低(M=2.859); NormFinder的分析结果显示, UPL基因的稳定性最高(E=0.223), UBQ基因的稳定性最低(M=4.759); BestKeeper分析显示, UPL基因的标准偏差(SD=0.513)最低。研究结果表明, UPL基因作为内参基因稳定性最高, UBQ基因的稳定性最低。因此可以选择UPL基因作为黄梁木不同组织中RT-qPCR定量分析的内参基因。
张登, 李景剑, 张梦洁, 包钰韬, 杨霄, 徐武云, 欧阳昆唏, 陈晓阳. 黄梁木实时荧光定量PCR分析中内参基因的选择. 植物学报, 2018, 53(6): 829-839.
Zhang Deng, Li Jingjian, Zhang Mengjie, Bao Yutao, Yang Xiao, Xu Wuyun, Ouyang Kunxi, Chen Xiaoyang. Selection and Validation of Reference Genes for Quantitative RT-PCR Analysis in Neolamarckia cadamba. Chinese Bulletin of Botany, 2018, 53(6): 829-839.
图 1 黄梁木不同组织总RNA电泳检测1: 皮; 2: 花; 3: 形成层; 4: 叶; 5: 根; 6: 芽; 7: 果
Figure 1 Electrophoresis of total RNA extracted from different tissues of Neolamarckia cadamba1: Bark; 2: Flower; 3: Cambium; 4: Leaf; 5: Root; 6: Bud; 7: Fruit
Tissues | A260/A280 | A260/A230 | Yield (ng?μL-1) |
---|---|---|---|
Root | 2.19 | 2.1 | 107.5 |
Bud | 2.12 | 2.14 | 410.6 |
Leaf | 2.13 | 1.96 | 258.5 |
Flower | 2.19 | 2.22 | 114.8 |
Fruit | 2.11 | 1.84 | 156.8 |
Bark | 2.17 | 1.89 | 299.7 |
Cambium | 2.14 | 2.11 | 331.8 |
表 1 黄梁木不同组织总RNA的质量
Table 1 The quality of total RNA extracted from different tissues of Neolamarckia cadamba
Tissues | A260/A280 | A260/A230 | Yield (ng?μL-1) |
---|---|---|---|
Root | 2.19 | 2.1 | 107.5 |
Bud | 2.12 | 2.14 | 410.6 |
Leaf | 2.13 | 1.96 | 258.5 |
Flower | 2.19 | 2.22 | 114.8 |
Fruit | 2.11 | 1.84 | 156.8 |
Bark | 2.17 | 1.89 | 299.7 |
Cambium | 2.14 | 2.11 | 331.8 |
Name | UniGene ID | Reference gene (Rg) ID | F primer (5'-3') R primer (5'-3') | Amplicator length (bp) |
---|---|---|---|---|
Actin | comp52737_c0 | g1 | TGTAGTGGATGAATGCTTCTGTTAT | 95 |
CTTCCTCCTACCAACTTCAAATG | ||||
comp79635_c0 | g2 | CTTCTGAGGTTATGGAGCAATCT | 101 | |
CGATAAATCAAAACTTCAAGCC | ||||
Clathrin adaptor complexes medium | comp48976_c0 | g3 | CTCAGAGAACGCTGCTGACTAC | 161 |
GAGCCAAGGGAAACAAGATAA | ||||
Cyclophilin | comp67418_c0 | g4 | GGGGTCTCACGCTCTTTACT | 83 |
GGATTGGATTGGGTTGGTT | ||||
comp75463_c0 | g5 | CCCCAGCAAGAAGACCACT | 213 | |
TTGACCATGAATCCCAACCA | ||||
comp77969_c0 | g6 | ATAGCATCCCAACCGAACA | 187 | |
CCCTCTTGCCTCCTGTGTAT | ||||
Elongation factor 1α | comp87079_c1 | g7 | ACCAGCATCACCGTTCTTCA | 123 |
GTCCTCGATTGCCACACCT | ||||
comp87526_c0 | g8 | AATCAGACAGAAACCCCTCAA | 245 | |
GAACCTCTCAATCACACGCTT | ||||
Eukaryotic initiation factor | comp6386_c0 | g9 | GTTGAAACTTCTTGGACATCG | 250 |
CTTGAGACACTGATTTGTATGAGA | ||||
Farnesyl pyrophosphate synthase 1 | comp72548_c0 | g10 | TGATAATCTGGCTTCCACCTT | 112 |
TGGGAGGAACTCAATCTCCTAC | ||||
comp75377_c0 | g11 | TATCAGGCTCAGCATTCCACT | 212 | |
TTGCCACAATAACACATCCAT | ||||
F-boxkelch-repeat protein | comp78454_c0 | g12 | AAGGCCAATTCTGTTCAAGC | 143 |
CCTAGAGGGAAAGACATGACTG | ||||
comp78817_c0 | g13 | GCAAACGGGGTAAAAGGA | 102 | |
AAAGGGTAAGAGTGACGACAGC | ||||
GAPDH | comp78593_c0 | g14 | TGTTCCAAGTGGGCATTTAC | 247 |
CGCTCTGAGGTGTTAATAAGTG | ||||
comp80828_c1 | g15 | CTGAGCATTTTTTAGGCTTGTC | 151 | |
TCAGATTCATGTGGCAGTCG | ||||
GTP-binding nuclear protein | comp85262_c0 | g16 | TCTCGCAACCTGCCTCTT | 257 |
TATCACTCCCATCTTCGCAC | ||||
Phosphoenolpyruvate carboxylase-related kinase 1 | comp75525_c0 | g17 | CGACCTCACATTCCTCATTAC | 291 |
ACATAGACCATCCAGAGCCCA | ||||
comp80613_c0 | g18 | TACATAGACCATCCAGAGCCA | 112 | |
GCAAAAGGGCAAGCAACAG | ||||
Protein phosphatase 2A | comp81334_c1 | g19 | GGGCTTTCCATCCCATACC | 128 |
AGCCTTAGGGGGATTGGAA | ||||
comp52412_c0 | g20 | ATGTTGGATGATATTAGTGGTGTG | 161 | |
TCATAGGAAAATAGACCTCTGGTT | ||||
Ribosomal protein L | comp46755_c0 | g21 | CTGAGGATTGTTAGCAGTTGAC | 119 |
ACCAGAAAACAGACCACCTAAG | ||||
comp52434_c0 | g22 | AAGGAAGGTAAAGCAGGGAA | 177 | |
GCATGGGCAGGGATATAAAC | ||||
comp87976_c0 | g23 | CACGCAGCATAGCCAAAC | 157 | |
AGGCAGTTCTCTGATTCTTTTG | ||||
Name | UniGene ID | Reference gene (Rg) ID | F primer (5'-3') R primer (5'-3') | Amplicator length (bp) |
Ribosomal protein S | comp65909_c1 | g24 | GCTATGGTAGTCTCCCGAAAG | 182 |
GGGGGAACAAGACTAAGGGT | ||||
comp67276_c0 | g25 | TTTTGTTTCCCCTCTTTGC | 97 | |
AACCTTGAACAACCTGTGTAGAA | ||||
comp71526_c0 | g26 | CGGTTACACAAGGTTGAATGA | 117 | |
AGAGGGTCTGGATTTGAGTGA | ||||
Ribulose 1,5-bisphosphate carboxylase | comp47386_c0 | g27 | CAGCACCGTAATCCATAAAAC | 226 |
CAAGCAGCCCAGCAAGTC | ||||
comp88001_c0 | g28 | ACAGGATGGGTAGAAAGAGGC | 210 | |
AGGATTGAGCCGAATACAACG | ||||
S-adenosylmethionine decarboxylase | comp44802_c0 | g29 | TCTTCGTGGCACTTCTCTCC | 133 |
ACAGGGTGTTGACTTGTTTCC | ||||
comp71874_c0 | g30 | ATAAGGTCTCTTCTTGTTCGTGTAG | 178 | |
GACTGAACAGCAACAGGAATAAT | ||||
comp80075_c0 | g31 | GCTGCCTGTGGGTCTCCTA | 85 | |
GTAAACCCCAATGCTACTCCT | ||||
Translation elongation factor | comp65909_c1 | g32 | GCTATGGTAGTCTCCCGAAAG | 184 |
CTGGGGGAACAAGACTAAGG | ||||
comp70791_c0 | g33 | TCAACCAACCGTTCCTACC | 195 | |
ACAACAGTCCTTTGCCACC | ||||
Tubulin α | comp70323_c2 | g34 | GGTGGTGGAACTGGCTCTG | 217 |
GGCAAATGTCATAGATGGCTT | ||||
comp76448_c4 | g35 | AAGGAGGGAATGAGTGGAG | 107 | |
ACTATGGCAAGAAGTCAAAGC | ||||
Tubulin B | comp66056_c0 | g36 | GCAAGAAAGCCTTCCTCCTAA | 153 |
TTCCCAACAATGTCAAATCAA | ||||
comp79707_c1 | g37 | TTCAGGAGAGTCAGCGAGC | 187 | |
CATCGTCTTCATATTCCCCTT | ||||
Ubiquitin conjugating enzyme | comp79182_c1 | g38 | TCCTTGCTTGTGGCGTCA | 213 |
CACGGGTGTCAAATCTGGC | ||||
Ubiquitin | comp67366_c0 | g39 | GACGGGAGGACCTTAGCA | 298 |
CTCGGAGACGGAGAACAA | ||||
comp82561_c0 | g40 | GCATTTGTGTCTTGCCTCTTTAT | 186 | |
GCGATGAGCAACATTCCTTTA | ||||
comp68357_c0 | g41 | TTTTTCAGCAAAGAACAACCG | 135 | |
TGAAGACCCTCACTGGAAAGA | ||||
Ubiquitin-protein ligase | comp87122_c0 | g42 | GGTTGGTGGTAGAGTTGTGACTC | 182 |
CGAGCACTACCACGACACG | ||||
comp87211_c0 | g43 | GCCCCTCCGTTAAACTCG | 122 | |
GCCATACTCCCACCGAAAT |
表 2 候选内参基因的引物序列
Table 2 Primer sequences of the candidate reference genes
Name | UniGene ID | Reference gene (Rg) ID | F primer (5'-3') R primer (5'-3') | Amplicator length (bp) |
---|---|---|---|---|
Actin | comp52737_c0 | g1 | TGTAGTGGATGAATGCTTCTGTTAT | 95 |
CTTCCTCCTACCAACTTCAAATG | ||||
comp79635_c0 | g2 | CTTCTGAGGTTATGGAGCAATCT | 101 | |
CGATAAATCAAAACTTCAAGCC | ||||
Clathrin adaptor complexes medium | comp48976_c0 | g3 | CTCAGAGAACGCTGCTGACTAC | 161 |
GAGCCAAGGGAAACAAGATAA | ||||
Cyclophilin | comp67418_c0 | g4 | GGGGTCTCACGCTCTTTACT | 83 |
GGATTGGATTGGGTTGGTT | ||||
comp75463_c0 | g5 | CCCCAGCAAGAAGACCACT | 213 | |
TTGACCATGAATCCCAACCA | ||||
comp77969_c0 | g6 | ATAGCATCCCAACCGAACA | 187 | |
CCCTCTTGCCTCCTGTGTAT | ||||
Elongation factor 1α | comp87079_c1 | g7 | ACCAGCATCACCGTTCTTCA | 123 |
GTCCTCGATTGCCACACCT | ||||
comp87526_c0 | g8 | AATCAGACAGAAACCCCTCAA | 245 | |
GAACCTCTCAATCACACGCTT | ||||
Eukaryotic initiation factor | comp6386_c0 | g9 | GTTGAAACTTCTTGGACATCG | 250 |
CTTGAGACACTGATTTGTATGAGA | ||||
Farnesyl pyrophosphate synthase 1 | comp72548_c0 | g10 | TGATAATCTGGCTTCCACCTT | 112 |
TGGGAGGAACTCAATCTCCTAC | ||||
comp75377_c0 | g11 | TATCAGGCTCAGCATTCCACT | 212 | |
TTGCCACAATAACACATCCAT | ||||
F-boxkelch-repeat protein | comp78454_c0 | g12 | AAGGCCAATTCTGTTCAAGC | 143 |
CCTAGAGGGAAAGACATGACTG | ||||
comp78817_c0 | g13 | GCAAACGGGGTAAAAGGA | 102 | |
AAAGGGTAAGAGTGACGACAGC | ||||
GAPDH | comp78593_c0 | g14 | TGTTCCAAGTGGGCATTTAC | 247 |
CGCTCTGAGGTGTTAATAAGTG | ||||
comp80828_c1 | g15 | CTGAGCATTTTTTAGGCTTGTC | 151 | |
TCAGATTCATGTGGCAGTCG | ||||
GTP-binding nuclear protein | comp85262_c0 | g16 | TCTCGCAACCTGCCTCTT | 257 |
TATCACTCCCATCTTCGCAC | ||||
Phosphoenolpyruvate carboxylase-related kinase 1 | comp75525_c0 | g17 | CGACCTCACATTCCTCATTAC | 291 |
ACATAGACCATCCAGAGCCCA | ||||
comp80613_c0 | g18 | TACATAGACCATCCAGAGCCA | 112 | |
GCAAAAGGGCAAGCAACAG | ||||
Protein phosphatase 2A | comp81334_c1 | g19 | GGGCTTTCCATCCCATACC | 128 |
AGCCTTAGGGGGATTGGAA | ||||
comp52412_c0 | g20 | ATGTTGGATGATATTAGTGGTGTG | 161 | |
TCATAGGAAAATAGACCTCTGGTT | ||||
Ribosomal protein L | comp46755_c0 | g21 | CTGAGGATTGTTAGCAGTTGAC | 119 |
ACCAGAAAACAGACCACCTAAG | ||||
comp52434_c0 | g22 | AAGGAAGGTAAAGCAGGGAA | 177 | |
GCATGGGCAGGGATATAAAC | ||||
comp87976_c0 | g23 | CACGCAGCATAGCCAAAC | 157 | |
AGGCAGTTCTCTGATTCTTTTG | ||||
Name | UniGene ID | Reference gene (Rg) ID | F primer (5'-3') R primer (5'-3') | Amplicator length (bp) |
Ribosomal protein S | comp65909_c1 | g24 | GCTATGGTAGTCTCCCGAAAG | 182 |
GGGGGAACAAGACTAAGGGT | ||||
comp67276_c0 | g25 | TTTTGTTTCCCCTCTTTGC | 97 | |
AACCTTGAACAACCTGTGTAGAA | ||||
comp71526_c0 | g26 | CGGTTACACAAGGTTGAATGA | 117 | |
AGAGGGTCTGGATTTGAGTGA | ||||
Ribulose 1,5-bisphosphate carboxylase | comp47386_c0 | g27 | CAGCACCGTAATCCATAAAAC | 226 |
CAAGCAGCCCAGCAAGTC | ||||
comp88001_c0 | g28 | ACAGGATGGGTAGAAAGAGGC | 210 | |
AGGATTGAGCCGAATACAACG | ||||
S-adenosylmethionine decarboxylase | comp44802_c0 | g29 | TCTTCGTGGCACTTCTCTCC | 133 |
ACAGGGTGTTGACTTGTTTCC | ||||
comp71874_c0 | g30 | ATAAGGTCTCTTCTTGTTCGTGTAG | 178 | |
GACTGAACAGCAACAGGAATAAT | ||||
comp80075_c0 | g31 | GCTGCCTGTGGGTCTCCTA | 85 | |
GTAAACCCCAATGCTACTCCT | ||||
Translation elongation factor | comp65909_c1 | g32 | GCTATGGTAGTCTCCCGAAAG | 184 |
CTGGGGGAACAAGACTAAGG | ||||
comp70791_c0 | g33 | TCAACCAACCGTTCCTACC | 195 | |
ACAACAGTCCTTTGCCACC | ||||
Tubulin α | comp70323_c2 | g34 | GGTGGTGGAACTGGCTCTG | 217 |
GGCAAATGTCATAGATGGCTT | ||||
comp76448_c4 | g35 | AAGGAGGGAATGAGTGGAG | 107 | |
ACTATGGCAAGAAGTCAAAGC | ||||
Tubulin B | comp66056_c0 | g36 | GCAAGAAAGCCTTCCTCCTAA | 153 |
TTCCCAACAATGTCAAATCAA | ||||
comp79707_c1 | g37 | TTCAGGAGAGTCAGCGAGC | 187 | |
CATCGTCTTCATATTCCCCTT | ||||
Ubiquitin conjugating enzyme | comp79182_c1 | g38 | TCCTTGCTTGTGGCGTCA | 213 |
CACGGGTGTCAAATCTGGC | ||||
Ubiquitin | comp67366_c0 | g39 | GACGGGAGGACCTTAGCA | 298 |
CTCGGAGACGGAGAACAA | ||||
comp82561_c0 | g40 | GCATTTGTGTCTTGCCTCTTTAT | 186 | |
GCGATGAGCAACATTCCTTTA | ||||
comp68357_c0 | g41 | TTTTTCAGCAAAGAACAACCG | 135 | |
TGAAGACCCTCACTGGAAAGA | ||||
Ubiquitin-protein ligase | comp87122_c0 | g42 | GGTTGGTGGTAGAGTTGTGACTC | 182 |
CGAGCACTACCACGACACG | ||||
comp87211_c0 | g43 | GCCCCTCCGTTAAACTCG | 122 | |
GCCATACTCCCACCGAAAT |
图 2 黄梁木43个候选内参基因的常规PCR扩增产物 M: Marker; g1-g43同表2。
Figure 2 PCR products of 43 candidate reference genes in Neolamarckia cadamba M: Marker; g1-g43 see Table 2.
Rg ID | M | Rg ID | M | Rg ID | M | Rg ID | M | Rg ID | M |
---|---|---|---|---|---|---|---|---|---|
g25 | 0.443 | g23 | 1.142 | g36 | 1.649 | g6 | 2.045 | g40 | 2.365 |
g42 | 0.443 | g31 | 1.183 | g34 | 1.693 | g4 | 2.080 | g17 | 2.412 |
g21 | 0.471 | g24 | 1.229 | g28 | 1.737 | g2 | 2.113 | g16 | 2.458 |
g33 | 0.565 | g13 | 1.287 | g7 | 1.789 | g32 | 2.148 | g38 | 2.503 |
g15 | 0.704 | g22 | 1.348 | g12 | 1.836 | g39 | 2.184 | g5 | 2.566 |
g43 | 0.862 | g14 | 1.404 | g10 | 1.881 | g19 | 2.217 | g27 | 2.652 |
g29 | 0.966 | g26 | 1.467 | g11 | 1.927 | g37 | 2.251 | g41 | 2.859 |
g18 | 1.014 | g9 | 1.533 | g30 | 1.967 | g1 | 2.285 | ||
g8 | 1.090 | g35 | 1.597 | g3 | 2.007 | g20 | 2.321 |
表 3 用geNorm软件分析内参基因的稳定性
Table 3 Analysis of expression stability of reference genes by geNorm
Rg ID | M | Rg ID | M | Rg ID | M | Rg ID | M | Rg ID | M |
---|---|---|---|---|---|---|---|---|---|
g25 | 0.443 | g23 | 1.142 | g36 | 1.649 | g6 | 2.045 | g40 | 2.365 |
g42 | 0.443 | g31 | 1.183 | g34 | 1.693 | g4 | 2.080 | g17 | 2.412 |
g21 | 0.471 | g24 | 1.229 | g28 | 1.737 | g2 | 2.113 | g16 | 2.458 |
g33 | 0.565 | g13 | 1.287 | g7 | 1.789 | g32 | 2.148 | g38 | 2.503 |
g15 | 0.704 | g22 | 1.348 | g12 | 1.836 | g39 | 2.184 | g5 | 2.566 |
g43 | 0.862 | g14 | 1.404 | g10 | 1.881 | g19 | 2.217 | g27 | 2.652 |
g29 | 0.966 | g26 | 1.467 | g11 | 1.927 | g37 | 2.251 | g41 | 2.859 |
g18 | 1.014 | g9 | 1.533 | g30 | 1.967 | g1 | 2.285 | ||
g8 | 1.090 | g35 | 1.597 | g3 | 2.007 | g20 | 2.321 |
Rg ID | Stability value | Rg ID | Stability value | Rg ID | Stability value | Rg ID | Stability value | Rg ID | Stability value |
---|---|---|---|---|---|---|---|---|---|
g42 | 0.223 | g8 | 0.787 | g28 | 1.249 | g6 | 1.441 | g40 | 1.937 |
g15 | 0.298 | g23 | 0.871 | g35 | 1.264 | g4 | 1.460 | g17 | 2.023 |
g25 | 0.343 | g31 | 0.951 | g10 | 1.316 | g19 | 1.496 | g38 | 2.062 |
g43 | 0.505 | g9 | 1.007 | g12 | 1.354 | g2 | 1.518 | g16 | 2.099 |
g21 | 0.517 | g13 | 1.021 | g36 | 1.371 | g39 | 1.545 | g5 | 2.350 |
g33 | 0.554 | g22 | 1.108 | g3 | 1.372 | g32 | 1.574 | g27 | 2.750 |
g18 | 0.567 | g14 | 1.136 | g34 | 1.384 | g1 | 1.657 | g41 | 4.759 |
g29 | 0.590 | g7 | 1.141 | g11 | 1.397 | g37 | 1.709 | ||
g24 | 0.724 | g26 | 1.160 | g30 | 1.411 | g20 | 1.733 |
表 4 NormFinder分析内参基因表达的稳定性
Table 4 Stability analysis of reference gene expression by NormFinder
Rg ID | Stability value | Rg ID | Stability value | Rg ID | Stability value | Rg ID | Stability value | Rg ID | Stability value |
---|---|---|---|---|---|---|---|---|---|
g42 | 0.223 | g8 | 0.787 | g28 | 1.249 | g6 | 1.441 | g40 | 1.937 |
g15 | 0.298 | g23 | 0.871 | g35 | 1.264 | g4 | 1.460 | g17 | 2.023 |
g25 | 0.343 | g31 | 0.951 | g10 | 1.316 | g19 | 1.496 | g38 | 2.062 |
g43 | 0.505 | g9 | 1.007 | g12 | 1.354 | g2 | 1.518 | g16 | 2.099 |
g21 | 0.517 | g13 | 1.021 | g36 | 1.371 | g39 | 1.545 | g5 | 2.350 |
g33 | 0.554 | g22 | 1.108 | g3 | 1.372 | g32 | 1.574 | g27 | 2.750 |
g18 | 0.567 | g14 | 1.136 | g34 | 1.384 | g1 | 1.657 | g41 | 4.759 |
g29 | 0.590 | g7 | 1.141 | g11 | 1.397 | g37 | 1.709 | ||
g24 | 0.724 | g26 | 1.160 | g30 | 1.411 | g20 | 1.733 |
Parameter | Genes | ||||||||
---|---|---|---|---|---|---|---|---|---|
g42 | g15 | g25 | g43 | g21 | g33 | g18 | g8 | g29 | |
SD±CP | 0.513 | 0.736 | 0.840 | 0.966 | 0.692 | 0.610 | 1.153 | 1.477 | 1.280 |
CV (% CP) | 1.804 | 3.530 | 3.522 | 3.745 | 3.008 | 2.091 | 5.015 | 6.600 | 5.474 |
coeff. of corr. (r) | 0.851 | 0.871 | 0.833 | 0.737 | 0.297 | 0.520 | 0.846 | 0.966 | 0.849 |
p-value | 0.015 | 0.011 | 0.020 | 0.059 | 0.515 | 0.232 | 0.016 | 0.001 | 0.016 |
表 5 BestKeeper分析内参基因表达的稳定性
Table 5 Stability analysis of reference gene expression by BestKeeper
Parameter | Genes | ||||||||
---|---|---|---|---|---|---|---|---|---|
g42 | g15 | g25 | g43 | g21 | g33 | g18 | g8 | g29 | |
SD±CP | 0.513 | 0.736 | 0.840 | 0.966 | 0.692 | 0.610 | 1.153 | 1.477 | 1.280 |
CV (% CP) | 1.804 | 3.530 | 3.522 | 3.745 | 3.008 | 2.091 | 5.015 | 6.600 | 5.474 |
coeff. of corr. (r) | 0.851 | 0.871 | 0.833 | 0.737 | 0.297 | 0.520 | 0.846 | 0.966 | 0.849 |
p-value | 0.015 | 0.011 | 0.020 | 0.059 | 0.515 | 0.232 | 0.016 | 0.001 | 0.016 |
Genes | G | N | B | O |
---|---|---|---|---|
g42 | 1 | 1 | 1 | 1 |
g25 | 1 | 3 | 5 | 2 |
g21 | 3 | 5 | 3 | 3 |
g33 | 4 | 6 | 2 | 4 |
g15 | 5 | 2 | 4 | 3 |
g43 | 6 | 4 | 6 | 5 |
表 6 3种分析软件的总分排序
Table 6 The rank of total score by 3 analysis softwares
Genes | G | N | B | O |
---|---|---|---|---|
g42 | 1 | 1 | 1 | 1 |
g25 | 1 | 3 | 5 | 2 |
g21 | 3 | 5 | 3 | 3 |
g33 | 4 | 6 | 2 | 4 |
g15 | 5 | 2 | 4 | 3 |
g43 | 6 | 4 | 6 | 5 |
[1] |
邓小梅, 欧阳昆唏, 张倩, 黄浩, 陈晓阳 (2011). 团花研究现状及发展思考. 中南林业科技大学学报 31, 90-95.
DOI URL |
[2] |
姜琼, 王幼宁, 王利祥, 孙政玺, 李霞 (2015). 盐胁迫下大豆根组织定量PCR分析中内参基因的选择. 植物学报 50, 754-764.
DOI URL |
[3] | 欧阳昆唏, 李俊成, 黄浩, 刘明骞,陈晓阳 (2013). 团花树α-扩展蛋白基因的克隆及表达分析. 林业科学 49, 62-71. |
[4] | 孙美莲, 王云生, 杨冬青, 韦朝领, 高丽萍, 夏涛, 单育, 骆洋 (2010). 茶树实时荧光定量PCR分析中内参基因的选择. 植物学报 45, 579-587. |
[5] | 吴文凯, 刘成前, 周志刚, 卢山 (2009). 用于莱茵衣藻荧光定量PCR分析的内参基因选择. 植物生理学通讯 45, 667-672. |
[6] |
Andersen CL, Jensen JL, ørntoft TF (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets.Cancer Res 64, 5245-5250.
DOI URL PMID |
[7] |
Bustin SA (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays.J Mol Endocrinol 25, 169-193.
DOI URL |
[8] |
Bustin SA (2010). Why the need for qPCR publication guidelines?—The case for MIQE.Methods 50, 217-226.
DOI URL PMID |
[9] |
Chandel M, Kumar M, Sharma U, Kumar N, Singh B, Kaur S (2016). Isolation and characterization of flavanols fromAnthocephalus cadamba and evaluation of their antioxidant, antigenotoxic, cytotoxic and COX-2 inhibitory activities. Rev Bras Farmacogn 26, 474-483.
DOI URL |
[10] |
Chen L, Zhong HY, Kuang JF, Li JG, Lu WJ, Chen JY (2011). Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions.Planta 234, 377-390.
DOI URL PMID |
[11] |
Die JV, Roman B, Flores F, Rowland LJ (2016). Design and sampling plan optimization for RT-qPCR experiments in plants: a case study in blueberry.Front Plant Sci 7, 271.
DOI URL PMID |
[12] |
Galeano E, Vasconcelos TS, Ramiro DA, de Fátima De Martin V, Carrer H (2014). Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis L.f.). BMC Res Notes 7, 464.
DOI URL PMID |
[13] |
Gibson UE, Heid CA, Williams PM (1996). A novel method for real time quantitative RT-PCR.Genome Res 6, 995-1001.
DOI URL |
[14] |
Ginzinger DG (2002). Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream.Exp Hematol 30, 503-512.
DOI URL |
[15] |
Ho WS, Pang SL, Abdullah J (2014). Identification and analysis of expressed sequence tags present in xylem tissues of kelampayan (Neolamarckia cadamba(Roxb.) Bosser). Physiol Mol Biol Plants 20, 393-397.
DOI URL PMID |
[16] |
Jian B, Liu B, Bi YR, Hou WS, Wu CX, Han TF (2008). Validation of internal control for gene expression study in soybean by quantitative real-time PCR.BMC Mol Biol 9, 59.
DOI URL PMID |
[17] | Li JC, Hu XS, Huang XL, Huo HQ, Li JJ, Zhang D, Li P, Ouyang KX, Chen XY (2017). Functional identification of an EXPA gene(NcEXPA8) isolated from the tree Neolamarckia cadamba. Biotechnol Biotec Eq 31, 1116-1125. |
[18] |
Liu ZL, Slininger PJ (2007). Universal external RNA controls for microbial gene expression analysis using microarray and qRT-PCR.J Microbiol Meth 68, 486-496.
DOI URL PMID |
[19] |
Martins MQ, Fortunato AS, Rodrigues WP, Partelli FL, Campostrini E, Lidon FC, DaMatta FM, Ramalho JC, Ribeiro-Barros AI (2017). Selection and validation of reference genes for accurate RT-qPCR data normalization in Coffea spp. under a climate changes context of interacting elevated [CO2] and temperature. Front Plant Sci 8, 307.
DOI URL PMID |
[20] | Ouyang KX, Li JC, Huang H, Que QM, Li P, Chen XY (2014). A simple method for RNA isolation from various tissues of the tree Neolamarckia cadamba. Biotechnol Biotec Eq 28, 1008-1013. |
[21] |
Ouyang KX, Li JC, Zhao XH, Que QM, Li P, Huang H, Deng XM, Singh SK, Wu AM, Chen XY (2016). Transcriptomic analysis of multipurpose timber yielding tree Neolamarckia cadamba during xylogenesis using RNA- Seq. PLoS One 11, e0159407.
DOI URL PMID |
[22] |
Pandey A, Negi PS (2016). Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cad- amba: a review. J Ethnopharmacol 181, 118-135.
DOI URL PMID |
[23] | Pandey A, Negi PS (2018). Phytochemical composition,in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Nat Prod Res 32, 1189-1192. |
[24] |
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper- Excel-based tool using pair-wise correlations.Biotechnol Lett 26, 509-515.
DOI URL |
[25] |
Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999). Housekeeping genes as internal standards: use and limits.J Biotechnol 75, 291-295.
DOI URL |
[26] | Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, research0034. |
[27] |
Zhao XH, Ouyang KX, Gan SM, Zeng W, Song LL, Zhao S, Li JC, Doblin MS, Bacic A, Chen XY, Marchant A, Deng XM, Wu AM (2014). Biochemical and molecular changes associated with heteroxylan biosynthesis in Neolamarckia cadamba(Rubiaceae) during xylogenesis. Front Plant Sci 5, 602.
DOI URL PMID |
[28] |
Zhou X, Tarver MR, Bennett GW, Oi FM, Scharf ME (2006). Two hexamerin genes from the termite Reticulitermes flavipes: sequence, expression, and proposed functions in caste regulation. Gene 376, 47-58.
DOI URL PMID |
[1] | 姜琼, 王幼宁, 王利祥, 孙政玺, 李霞. 盐胁迫下大豆根组织定量PCR分析中内参基因的选择[J]. 植物学报, 2015, 50(6): 754-764. |
[2] | 苏晓娟, 樊保国, 袁丽钗, 崔秀娜, 卢善发. 实时荧光定量PCR分析中毛果杨内参基因的筛选和验证[J]. 植物学报, 2013, 48(5): 507-518. |
[3] | 李冉, 李建彩, 周国鑫, 娄永根. 水稻虫害诱导相关基因实时定量PCR中内参基因的选择[J]. 植物学报, 2013, 48(2): 184-191. |
[4] | 景丹龙, 马江, 张博, 韩逸洋, 刘志雄, 陈发菊. 红花玉兰MwAG基因在花发育不同时期的表达[J]. 植物学报, 2013, 48(2): 145-150. |
[5] | 袁伟, 万红建, 杨悦俭. 植物实时荧光定量PCR内参基因的特点及选择[J]. 植物学报, 2012, 47(4): 427-436. |
[6] | 孙美莲, 王云生, 杨冬青, 韦朝领, 高丽萍, 夏涛, 单育, 骆洋. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45(05): 579-587. |
[7] | 田义;王强;张利义;康国栋;杨玲;郝红梅;杨振英;丛佩华*. 外源腐胺促进苹果果皮花青苷积累的效应[J]. 植物学报, 2009, 44(03): 310-316. |
[8] | 王艳 蒋磊 李韶山. 拟南芥CHS 基因表达的实时荧光定量PCR 检测[J]. 植物学报, 2005, 22(05): 594-598. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||