植物学报 ›› 2018, Vol. 53 ›› Issue (1): 5-16.DOI: 10.11983/CBB17102
收稿日期:
2017-05-17
接受日期:
2017-06-30
出版日期:
2018-01-01
发布日期:
2018-01-10
通讯作者:
侯岁稳
基金资助:
Yang Liu, Jing Zhang, Qiuling Wang, Suiwen Hou*()
Received:
2017-05-17
Accepted:
2017-06-30
Online:
2018-01-01
Published:
2018-01-10
Contact:
Suiwen Hou
摘要: 细胞自噬是一类依赖于溶酶体和液泡的蛋白质降解途径。在动物细胞中, 靶物质通过自噬体包裹被运送到溶酶体中,由特定的水解酶降解; 而植物和酵母细胞中该过程在液泡内进行。近年来, 在模式植物拟南芥(Arabidopsis thaliana)中鉴定到多个关键ATG基因, 它们对植物细胞自噬体的形成及自噬调控起到关键作用。该文全面综述了植物细胞自噬的调控及其在植物逆境胁迫中的生理功能。
刘洋, 张静, 王秋玲, 侯岁稳. 植物细胞自噬研究进展. 植物学报, 2018, 53(1): 5-16.
Yang Liu, Jing Zhang, Qiuling Wang, Suiwen Hou. Research Progress in Plant Autophagy. Chinese Bulletin of Botany, 2018, 53(1): 5-16.
酿酒酵母 (Saccharomyces cerevisiae) | 拟南芥(Arabidopsis thaliana) |
---|---|
Atg1 | AtATG1a、AtATG1b、AtATG1c |
Atg2 | AtATG2a |
Atg3 | AtATG3 |
Atg4 | AtATG4aa、AtATG4ba |
Atg5 | AtATG5a |
Atg6 | AtATG6a |
Atg7 | AtATG7a |
Atg8 | AtATG8a、AtATG8b、AtATG8c、AtATG8d、AtATG8e、AtATG8f、AtATG8g、AtATG8hb、AtATG8i b |
Atg9 | AtATG9a |
Atg10 | AtATG10a |
Atg101 | AtATG101 |
Atg11 | AtATG11a |
Atg12 | AtATG12a、AtATG12b |
Atg13 | AtATG13a、AtATG13b |
Atg14 | 未鉴定 |
Atg16 | AtATG16Lc |
Atg17 | AtATG11-like |
Atg18 | AtATG18aa、AtATG18b、AtATG18c、AtATG18d、AtATG18e、AtATG18f、AtATG18g、AtATG18h |
Atg29 | 未鉴定 |
Atg31 | 未鉴定 |
表1 拟南芥中的ATG同源基因
Table 1 Arabidopsis ATG homologs
酿酒酵母 (Saccharomyces cerevisiae) | 拟南芥(Arabidopsis thaliana) |
---|---|
Atg1 | AtATG1a、AtATG1b、AtATG1c |
Atg2 | AtATG2a |
Atg3 | AtATG3 |
Atg4 | AtATG4aa、AtATG4ba |
Atg5 | AtATG5a |
Atg6 | AtATG6a |
Atg7 | AtATG7a |
Atg8 | AtATG8a、AtATG8b、AtATG8c、AtATG8d、AtATG8e、AtATG8f、AtATG8g、AtATG8hb、AtATG8i b |
Atg9 | AtATG9a |
Atg10 | AtATG10a |
Atg101 | AtATG101 |
Atg11 | AtATG11a |
Atg12 | AtATG12a、AtATG12b |
Atg13 | AtATG13a、AtATG13b |
Atg14 | 未鉴定 |
Atg16 | AtATG16Lc |
Atg17 | AtATG11-like |
Atg18 | AtATG18aa、AtATG18b、AtATG18c、AtATG18d、AtATG18e、AtATG18f、AtATG18g、AtATG18h |
Atg29 | 未鉴定 |
Atg31 | 未鉴定 |
[1] | Abreu S, Kriegenburg F, Gómez-Sánchez R, Mari M, Sanchez-Wandelmer J, Skytte Rasmussen M, Soares Guimarães R, Zens B, Schuschnig M, Hardenberg R, Peter M, Johansen T, Kraft C, Martens S, Reggiori F (2017). Conserved Atg8 recognition sites mediate Atg4 association with autophagosomal membranes and Atg8 deconjugation.EMBO Rep 18, 765-780. |
[2] | Avin-Wittenberg T, Bajdzienko K, Wittenberg G, Alseekh S, Tohge T, Bock R, Giavalisco P, Fernie AR (2015). Global analysis of the role of autophagy in cellular metabo- lism and energy homeostasis in Arabidopsis seedlings under carbon starvation.Plant Cell 27, 306-322. |
[3] | Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F, Perata P, Voesenek LACJ, van Dongen JT (2012). Making sense of low oxygen sensing.Trends Plant Sci 17, 129-138. |
[4] | Bailey-Serres J, Voesenek LACJ (2008). Flooding stress: acclimations and genetic diversity.Annu Rev Plant Biol 59, 313-339. |
[5] | Bassham DC (2009). Function and regulation of macro- autophagy in plants.Biochim Biophys Acta 1793, 1397-1403. |
[6] | Behrends C, Sowa ME, Gygi SP, Harper JW (2010). Net- work organization of the human autophagy system. Nature 466, 68-76. |
[7] | Chen L, Liao B, Qi H, Xie LJ, Huang L, Tan WJ, Zhai N, Yuan LB, Zhou Y, Yu LJ, Chen QF, Shu WS, Xiao S (2015). Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana. Autophagy 11, 2233-2246. |
[8] | Chung T, Phillips AR, Vierstra RD (2010). ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlledATG- 12A AND ATG12B loci. Plant J 62, 483-493. |
[9] | Contento AL, Xiong Y, Bassham DC (2005). Visualization of autophagy in Arabidopsis using the fluorescent dye mono- dansylcadaverine and a GFP-AtATG8e fusion protein.Pl- ant J 42, 598-608. |
[10] | Deter RL, Duve DC (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes.J Cell Biol 33, 437-449. |
[11] | Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002). The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and sene- scence in Arabidopsis thaliana. J Biol Chem 277, 33105-33114. |
[12] | Duve CD, Pressman BC, Gianetto R, Wattiaux R, Appe- lmans F (1955). Tissue fractionation studies. 6. Intracel- lular distribution patterns of enzymes in rat-liver tissue.Bio- chem J 60, 604-617. |
[13] | Fan LS, Li RL, Pan JW, Ding ZJ, Lin JX (2015). Endocytosis and its regulation in plants.Plant Sci 20, 388-397. |
[14] | Feys BJ, Moisan LJ, Newman MA, Parker JE (2001). Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4.EMBO J 20, 5400-5411. |
[15] | Gao CJ, Zhuang XH, Cui Y, Fu X, He YL, Zhao Q, Zeng YL, Shen JB, Luo M, Jiang LW (2015). Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vac- uolar protein transport and autophagic degradation.Proc Natl Acad Sci USA 112, 1886-1891. |
[16] | Guiboileau A, Avila-Ospina L, Yoshimoto K, Soulay F, Azzopardi M, Marmagne A, Lothier J, Masclaux- Daubresse C (2013). Physiological and metabolic conse- quences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability.New Phytol 199, 683-694. |
[17] | Hackenberg T, Juul T, Auzina A, Gwiżdż S, Małolepszy A, Van Der Kelen K, Dam S, Bressendorff S, Lorentzen A, Roepstorff P, Nielsen KL, Jørgensen JE, Hofius D, Van Breusegem F, Petersen M, Andersen SU (2013). Cata- lase and NO CATALASE ACTIVITY1 promote autophagy- dependent cell death in Arabidopsis. Plant Cell 25, 4616-4626. |
[18] | Han SJ, Wang Y, Zheng XY, Jia Q, Zhao JP, Bai F, Hong YG, Liu YL (2015). Cytoplastic glyceraldehyde-3-phos- phate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana bentha- miana. Plant Cell 27, 1316-1331. |
[19] | Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the dis- ruption of an Arabidopsis autophagy gene.Plant Physiol 129, 1181-1191. |
[20] | He CC, Klionsky DJ (2009). Regulation mechanisms and signaling pathways of autophagy.Annu Rev Genet 43, 67-93. |
[21] | Heider MR, Munson M (2012). Exorcising the exocyst com- plex.Traffic 13, 898-907. |
[22] | Henry E, Fung N, Liu J, Drakakaki G, Coaker G (2015). Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant im- mune responses.PLoS Genet 11, e1005199. |
[23] | Hof A, Zechmann B, Schwammbach D, Hückelhoven R, Doehlemann G (2014). Alternative cell death mechanisms determine epidermal resistance in incompatible barley-Ustilago interactions. Molecular plant-microbe interactions. Mol Plant Microbe Interact 27, 403-414. |
[24] | Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NHT, Mattsson O, Jørgensen LB, Jones JDG, Mundy J, Petersen M (2009). Autophagic components contribute to hypersensitive cell death in Arabidopsis.Cell 137, 773-783. |
[25] | Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura SI, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009). Nutrient- dependent mTORC1 association with the ULK1-Atg13- FIP200 complex required for autophagy.Mol Biol Cell 20, 1981-1991. |
[26] | Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y (2006). AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells.Plant Cell Physiol 47, 1641-1652. |
[27] | Izumi M, Hidema J, Ishida H (2013a). Deficiency of auto- phagy leads to significant changes of metabolic profiles in Arabidopsis.Plant Signal Behav 8, e25023. |
[28] | Izumi M, Hidema J, Makino A, Ishida H (2013b). Autophagy contributes to nighttime energy availability for growth in Ara- bidopsis.Plant Physiol 161, 1682-1693. |
[29] | Izumi M, Ishida H, Nakamura S, Hidema J (2017). Entire photodamaged chloroplasts are transported to the central vacuole by autophagy.Plant Cell 29, 377-394. |
[30] | Johansen T, Lamark T (2011). Selective autophagy medi- ated by autophagic adapter proteins.Autophagy 7, 279-296. |
[31] | Kabbage M, Williams B, Dickman MB (2013). Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 9, e1003287. |
[32] | Katsiarimpa A, Anzenberger F, Schlager N, Neubert S, Hauser MT, Schwechheimer C, Isono E (2011). The Arabidopsis deubiquitinating enzyme AMSH3 interacts with ESCRT-III subunits and regulates their localization.Plant Cell 23, 3026-3040. |
[33] | Katsiarimpa A, Kalinowska K, Anzenberger F, Weis C, Ostertag M, Tsutsumi C, Schwechheimer C, Brunner F, Hückelhoven R, Isono E (2013). The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis.Plant Cell 25, 2236-2252. |
[34] | Kirisako T, Baba M, Ishihara BN, Miyazawa AK, Ohsumi CM, Yoshimori T, Noda T, Ohsumi Y (1999). Formation process of autophagosome is traced with Apg8/Aut7p in yeast.J Cell Biol 147, 435-446. |
[35] | Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003). A unified nomenclature for yeast autophagy-related genes.Dev Cell 5, 539-545. |
[36] | Kolb C, Nagel MK, Kalinowska K, Hagmann J, Ichikawa M, Anzenberger F, Alkofer A, Sato MH, Braun P, Isono E (2015). FYVE1 is essential for vacuole biogenesis and in- tracellular trafficking in Arabidopsis.Plant Physiol 167, 1361-1373. |
[37] | Kulich I, Pečenková T, Sekereš J, Smetana O, Fendrych M, Foissner I, Höftberger M, Zárský V (2013). Arabidopsis exocyst subcomplex containing subunit EXO70B1 is in- volved in autophagy-related transport to the vacuole.Tra- ffic 14, 1155-1165. |
[38] | Kulich I, Žárský V (2014). Autophagy-related direct mem- brane import from ER/cytoplasm into the vacuole or apo- plast: a hidden gateway also for secondary metabolites and phytohormones?Int J Mol Sci 15, 7462-7474. |
[39] | Lam E (2004). Controlled cell death, plant survival and development.Nat Rev Mol Cell Biol 5, 305-315. |
[40] | Le Bars R, Marion J, Le Borgne R, Satiat-Jeunemaitre B, Bianchi MW (2014). ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autoph- agosome formation in plants.Nat Commun 5, 4121. |
[41] | Li FQ, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, Vierstra RD (2015). Autophagic recycling plays a central role in maize nitrogen remobilization.Plant Cell 27, 1389-1408. |
[42] | Li FQ, Chung T, Vierstra RD (2014). AUTOPHAGY-RELA- TED11 plays a critical role in general autophagy- and se- nescence-induced mitophagy in Arabidopsis. Plant Cell 26, 788-807. |
[43] | Liu X, Mao K, Yu AYH, Omairi-Nasser A, Austin II J, Glick BS, Yip CK, Klionsky DJ (2016). The Atg17-Atg31-Atg29 complex coordinates with Atg11 to recruit the Vam7 SNA- RE and mediate autophagosome-vacuole fusion.Curr Biol 26, 150-160. |
[44] | Liu YL, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar SP (2005). Autophagy regulates program- med cell death during the plant innate immune response.Cell 121, 567-577. |
[45] | Liu YM, Xiong Y, Bassham DC (2009). Autophagy is required for tolerance of drought and salt stress in plants.Autophagy 5, 954-963. |
[46] | Masclaux-Daubresse C, Clément G, Anne P, Routaboul JM, Guiboileau A, Soulay F, Shirasu K, Yoshimoto K (2014). Stitching together the multiple dimensions of auto- phagy using metabolomics and transcriptomics reveals impacts on metabolism, development, and plant responses to the environment in Arabidopsis.Plant Cell 26, 1857-1877. |
[47] | Minina EA, Bozhkov PV, Hofius D (2014). Autophagy as initiator or executioner of cell death.Trends Plant Sci 19, 692-697. |
[48] | Mizushima N (2010). The role of the Atg1/ULK1 complex in autophagy regulation.Curr Opin Cell Biol 22, 132-139. |
[49] | Moriyasu Y, Hattori M, Jauh GY, Rogers JC (2003). Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process.Plant Cell Physiol 44, 795-802. |
[50] | Patel S, Dinesh-Kumar SP (2008). Arabidopsis ATG6 is required to limit the pathogen-associated cell death res- ponse.Autophagy 4, 20-27. |
[51] | Phillips AR, Suttangkakul A, Vierstra RD (2008). The ATG12-conjugating enzyme ATG10 is essential for auto- phagic vesicle formation in Arabidopsis thaliana. Genetics 178, 1339-1353. |
[52] | Plaxton WC (1996). The organization and regulation of plant glycolysis.Annu Rev Plant Physiol Plant Mol Biol 47, 185-214. |
[53] | Qi H, Xia FN, Xie LJ, Yu LJ, Chen QF, Zhuang XH, Wang Q, Li FQ, Jiang LW, Xie Q (2017). TRAF family proteins regulate autophagy dynamics by modulating AUTOPH- AGY PROTEIN6 stability in Arabidopsis.Plant Cell 29, 890-911. |
[54] | Reggiori F, Klionsky DJ (2013). Autophagic processes in yeast: mechanism, machinery and regulation.Genetics 194, 341-361. |
[55] | Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS (2011). Delivery of prolamins to the protein storage vacuole in maize aleurone cells.Plant Cell 23, 769-784. |
[56] | Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M (2013). Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis.Plant Cell 25, 4967-4983. |
[57] | Shin JH, Yoshimoto K, Ohsumi Y, Jeon JS, An G (2009). OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice.Mol Cells 27, 67-74. |
[58] | Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G (2008). An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses.J Exp Bot 59, 4029-4043. |
[59] | Spitzer C, Li FQ, Buono R, Roschzttardtz H, Chung T, Zhang M, Osteryoung KW, Vierstra RD, Otegui MS (2015). The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic tu- rnover of plastids in Arabidopsis.Plant Cell 27, 391-402. |
[60] | Su W, Ma HJ, Liu C, Wu J, Yang J (2006). Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol Biol Rep 33, 273-278. |
[61] | Suttangkakul A, Li FQ, Chung T, Vierstra RD (2011). The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis.Plant Cell 23, 3761-3779. |
[62] | Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organiza- tion. Genes Cells 12, 209-218. |
[63] | Suzuki K, Ohsumi Y (2010). Current knowledge of the pre- autophagosomal structure (PAS).FEBS Lett 584, 1280-1286. |
[64] | Suzuki NN, Yoshimoto K, Fujioka Y, Ohsumi Y, Inagaki F (2005). The crystal structure of plant ATG12 and its bio- logical implication in autophagy.Autophagy 1, 119-126. |
[65] | Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005). Autophagic nutrient recycling in Arabidopsis di- rected by the ATG8 and ATG12 conjugation pathways.Plant Physiol 138, 2097-2110. |
[66] | Thompson AR, Vierstra RD (2005). Autophagic recycling: lessons from yeast help define the process in plants.Curr Opin Plant Biol 8, 165-173. |
[67] | Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf DH (1994). Isolation of autopha- gocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349, 275-280. |
[68] | Tristan C, Shahani N, Sedlak TW, Sawa A (2011). The diverse functions of GAPDH: views from different sub- cellular compartments.Cell Signal 23, 317-323. |
[69] | Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999). A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhan- ced active oxygen detoxification.Plant Cell 11, 1195-1206. |
[70] | Tsukada M, Ohsumi Y (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cere- visiae. FEBS Lett 333, 169-174. |
[71] | Voesenek LACJ, Sasidharan R (2013). Ethylene- and oxy- gen signaling-drive plant survival during flooding.Plant Biol 15, 426-435. |
[72] | Wang P, Sun X, Jia X, Ma FW (2017). Apple autophagy- related protein MdATG3s afford tolerance to multiple abi- otic stresses.Plant Sci 256, 53-64. |
[73] | Wang P, Sun X, Jia X, Wang N, Gong XQ, Ma FW (2016). Characterization of an autophagy-related gene MdATG8i from apple. Front Plant Sci 7, 720. |
[74] | Wang SH, Blumwald E (2014). Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated va- cuoles.Plant Cell 26, 4875-4888. |
[75] | Wang Y, Yu BJ, Zhao JP, Guo JB, Li Y, Han SJ, Huang L, Du YM, Hong YG, Tang DZ, Liu YL (2013). Autophagy contributes to leaf starch degradation.Plant Cell 25, 1383-1399. |
[76] | Wong PM, Puente C, Ganley IG, Jiang XJ (2013). The ULK1 complex: sensing nutrient signals for autophagy ac- tivation.Autophagy 9, 124-137. |
[77] | Wu L, Chen H, Curtis C, Fu ZQ (2014). Go in for the kill: how plants deploy effector-triggered immunity to combat path- ogens.Virulence 5, 710-721. |
[78] | Xie ZP, Klionsky DJ (2007). Autophagosome formation: core machinery and adaptations.Nat Cell Biol 9, 1102-1109. |
[79] | Xiong Y, Contento AL, Bassham DC (2005). AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42, 535-546. |
[80] | Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis.Plant Physiol 143, 291-299. |
[81] | Xiong Y, McCormack M, Li L, Hall Q, Xiang CB, Sheen J (2013). Glucose-TOR signaling reprograms the transcrip- tome and activates meristems.Nature 496, 181-186. |
[82] | Xiong Y, Sheen J (2014). The role of target of rapamycin signaling networks in plant growth and metabolism.Plant Physiol 164, 499-512. |
[83] | Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy.Plant Cell 16, 2967-2983. |
[84] | Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Con- sonni C, Panstruga R, Ohsumi Y, Shirasu K (2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senes- cence and the innate immune response in Arabidopsis.Plant Cell 21, 2914-2927. |
[85] | Yoshimoto K, Takano Y, Sakai Y (2010). Autophagy in plants and phytopathogens.FEBS Lett 584, 1350-1358. |
[86] | Zhu JK (2001). Cell signaling under salt, water and cold stresses.Curr Opin Plant Biol 4, 401-406. |
[87] | Zhuang XH, Chung KP, Cui Y, Lin WL, Gao CJ, Kang BH, Jiang LW (2017). ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis.Proc Natl Acad Sci USA 114, E426-E435. |
[88] | Zhuang XH, Wang H, Lam SK, Gao CJ, Wang XF, Cai Y, Jiang LW (2013). A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regu- lates autophagosome formation in Arabidopsis.Plant Cell 25, 4596-4615. |
[1] | 杜志烨, 李明玉, 陈稷, 黄进. 植物胁迫相关蛋白功能研究进展[J]. 植物学报, 2024, 59(1): 110-121. |
[2] | 李喜豹, 赖敏怡, 梁山, 王小菁, 高彩吉, 杨超. 植物细胞自噬基因的功能与转录调控机制[J]. 植物学报, 2021, 56(2): 201-217. |
[3] | 王研, 贾博为, 孙明哲, 孙晓丽. 野生大豆耐逆分子调控机制研究进展[J]. 植物学报, 2021, 56(1): 104-115. |
[4] | 陈世璇, 张振南, 王波, 朱燕, 龚月桦, 孙冬梅, 邓馨. 复苏植物旋蒴苣苔J结构域蛋白编码基因BhDNAJC2的 克隆、表达与功能[J]. 植物学报, 2015, 50(2): 180-190. |
[5] | 田秀红 李广敏. pH作为逆境胁迫信号的研究进展[J]. 植物学报, 2001, 18(04): 466-472. |
[6] | 王娟 李德全. 逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J]. 植物学报, 2001, 18(04): 459-465. |
[7] | 向旭 傅家瑞. 脱落酸应答基因的表达调控及其与逆境胁迫的关系[J]. 植物学报, 1998, 15(03): 11-16. |
[8] | 陈少裕. 膜脂过氧化与植物逆境胁迫[J]. 植物学报, 1989, 6(04): 211-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||