植物学报 ›› 2017, Vol. 52 ›› Issue (6): 744-755.DOI: 10.11983/CBB16242

• 研究报告 • 上一篇    下一篇

脉冲电场作用对植物释放负离子与气孔特征的关系

吴仁烨1,2, 孙缘芬1, 郑金贵1,2,*(), 邓传远3, 叶大鹏4, 王晴水1   

  1. 1福建省特种作物育种与利用工程技术研究中心, 福州 350002
    2福建农林大学, 作物科学学院, 作物遗传育种与综合利用教育部重点实验室, 福州 350002
    3福建农林大学园林学院, 福州 350002
    4福建农林大学机电工程学院, 福州 350002
  • 收稿日期:2016-12-06 接受日期:2017-05-04 出版日期:2017-11-01 发布日期:2018-02-22
  • 通讯作者: 郑金贵
  • 基金资助:
    国家自然科学基金(No.31500207)、国家科技支撑计划(No.2013BAD01B05)和福建农林大学科技发展金计划(No.KF2015076)

Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field

Wu Renye1,2, Sun Yuanfen1, Zheng Jingui1,2,*(), Deng Chuanyuan3, Ye Dapeng4, Wang Qingshui1   

  1. 1Fujian Engineering Technology Research Center of Breeding and Utilization for Special Crops, Fuzhou 350002, China
    2Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    3College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    4College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2016-12-06 Accepted:2017-05-04 Online:2017-11-01 Published:2018-02-22
  • Contact: Zheng Jingui

摘要: 植物在自然状态下释放负离子的能力很弱, 施加脉冲电场可激发其释放能力。在密闭的玻璃箱中, 研究紫背竹芋(Stromanthe sanguinea)、绒叶肖竹芋(Calathea zebrina)和朱顶红(Hippeastrum rutilum)在常态、脉冲电场和光照刺激下释放负离子的浓度, 并观察叶片气孔特征, 结果表明: (1) 不同参数脉冲电场对植物释放负离子的能力影响不同, 每种植物均具有高效释放负离子的最佳脉冲电场, 紫背竹芋为A3B3C3 (A3, U=1.5×104 V; B3, T=1.5 s; C3, τ =65 ms); 绒叶肖竹芋为A3B4C1 (A3, U=1.5×104 V; B4, T=2.0 s; C1, τ =5 ms); 朱顶红为A4B4C1 (A4, U=2.0×104 V; B4, T=2.0 s; C1, τ =5 ms)。(2) 植物体上所储存的电压越大, 其释放负离子的能力越强。(3) 脉冲电场作用时, 植物释放负离子的能力与光照度呈正相关; 无电场刺激时两者差异不显著(P>0.05)。(4) 植物释放负离子的能力与叶片气孔特征关系密切, 脉冲电场作用下叶片气孔的开合度和气孔密度越大, 其释放能力越强。

关键词: 负离子, 电刺激法, 脉冲电场, 光照度, 气孔

Abstract: Under normal conditions, the capacity of plants to generate negative air ions (NAIs) is very weak. However, stimulation of a pulsed electrical field can result in substantial improvement of the ability for NAI generation. We examined NAI generation in Stromanthe sanguinea, Calathea zebrina, and Hippeastrum rutilum in glass chambers under the natural state and under pulsed electrical field and light stimulation and analyzed the shape of stomata. We found variation in NAI generation by plants due to the different combined parameters of the pulsed electrical field. Each plant has its own optimal pulsed electrical field with a combination of parameters for efficient NAI generation: S. sanguinea with A3B3C3 (A3, U=1.5×104 V; B3, T=1.5 s; C3, τ =65 ms), C. zebrina with A3B4C1 (A3, U=1.5×104 V; B4, T=2.0 s; C1,τ =5 ms) and H. rutilum with A4B4C1 (A4, U=2.0×104 V; B4, T=2.0 s; C1, τ=5 ms). With the application of a pulsed electrical field to plants, the higher the voltage, the greater the capacity for NAI generation. With enhanced light intensity, the ability to generate NAI significantly increased with application of a pulsed electrical field. Without the pulsed electrical field, despite the slightly increased NAI concentration with increasing light intensity, NAI concentration did not differ (P>0.05). Finally, NAI generation was closely related to the characteristics of leaf stomata. Furthermore, a greater degree of stomatal opening and stomatal density was associated with stronger capacity to generate NAI.

Key words: negative air ions, electrostimulation, pulsed electrical field, light intensity, stomata