Chinese Bulletin of Botany ›› 2018, Vol. 53 ›› Issue (4): 509-518.doi: 10.11983/CBB17115

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Chloroplast Ultrastructure and Chlorophyll Fluorescence Characteristics of Three Cultivars of Pseudosasa japonica

Chen Keyi, Li Zhaona, Cheng Minmin, Zhao Yanghui, Zhou Mingbing, Yang Haiyun*()   

  1. State Key Laboratory of Subtropical Silviculture Zhejiang Provincial Collaborative, Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A & F University, Lin’an 311300, China
  • Received:2017-06-10 Accepted:2017-10-07 Online:2018-09-11 Published:2018-07-01
  • Contact: Yang Haiyun E-mail:yhy2006@zafu.edu.cn
  • About author:† These authors contributed equally to this paper

Abstract:

We explored the different photosynthetic characteristics of three Pseudosasa cultivars: P. japonica, P. japonica f. akebonosuji, and P. japonica f. akebono. The differences in photosystem activity and photosynthetic characteristics of different leaf colors were revealed by the changes of chloroplast ultrastructure and fluorescence kinetics curves. The results showed that the photosynthetic pigment content of the three species was significantly different. Except for the intact thylakoid layer structure in the white part of the chloroplast, the green streak and the radix were significantly less than the radix. The chloroplast developmental maturity is inconsistent; the OJIP curve and parameters indicate that the open reduction of the flowering green leaf and the saplings of the PSII reaction center is lower than that of the yam, the capture energy that is used for the electron transfer share to be smaller, and the PSII activity is weaker; The redox balance of the electron transport chain of bamboo leaves P700 to QA is biased towards the reducing side, and it is presumed that the P700 reaction center P700 to PSII primary electron acceptor QA electron transport chain is damaged. Therefore, the chloroplast development caused by changes in PSII activity in the photosystem is immature, which may be the direct cause of the difference in leaf color of the species.

Key words: leaf coloration, Pseudosasa japonica f. akebonosuji, photosynthetic pigments, chloroplast ultrastructure, chlorophyll fluorescence

Table 1

Photosynthetic pigments content and relative ratio of different cultivars of Pseudosasa japonica leaves (means±SE)"

Photosynthetic pigments GL SA SG VL
Chla (mg·g-1 FW) 27.19±1.17 a 0.34±0.17 c 25.39±2.41 a 17.09±0.52 b
Chlb (mg·g-1 FW) 8.66±0.33 a 0.16±0.07 c 8.27±0.69 a 5.70±0.17 b
Car (mg·g-1 FW) 4.89±0.28 a 0.32±0.08 c 5.52±0.55 a 4.07±0.13 b
Chla/b 3.14±0.02 a 1.99±0.09 b 3.07±0.03 a 3.00±0.00 a
Chla+b (mg·g-1 FW) 35.86±1.51 a 0.51±0.25 c 33.66±3.11 a 22.79±0.70 b

Figure 1

Three kinds of Pseudosasa japonica leavesSA+SG: Albino and green sector in leaf of P. japonica f. akebonosuji with strips; VL: Virescent leaf of P. japonica f. akebono. GL: Green leaf of P. japonica"

Figure 2

Plate chloroplast ultrastructure of three cultivars of Pseudosasa japonica leaves(A) Mesophyll cells in white zones of zebra leaf of P. japonica f. akebonosuji; (B) Mesophyll cells in green zones of P. japonica f. akebonosuji; (C) Mesophyll cells in the leaf of P. japonica f. akebono; (D) Mesophyll cells in the leaf of P. japonica. G: Granum; Os: Osmiophile globule; S: Starch grain; Th: Thylakoid membranes"

Figure 3

Relative variable fluorescence (Vt) with the time change of different cultivars of Pseudosasa japonica leavesSG, VL and GL see Table 1."

Figure 4

Activity parameters for unit reaction center of different cultivars of Pseudosasa japonica leavesVL, GL and SG see Table 1. ABS/RC: The amount of light absorbed by the unit reaction center; TRo/RC: The large amount of PSII; ETo/RC: The energy of the unit reaction center for electron transfer; DIo/RC: The heat dissipation of the unit reaction center; ABS/CSo: Absorption flux per unit area; TRo/CSo: Trapped energy flux per unit area; ETo/CSo: Electron transport flux per unit area; DIo/CSo: Dissipated energy flux perunit area; RC/CSo: Number of active reaction centers per unit area"

Table 2

Analysis of fluorescence parameters of different cultivars of Pseudosasa japonica leaves"

GL VL SG
F0 0.40±0.01 b 0.44±0.03 a 0.39±0.04 ab
Fm 1.64±0.13 a 1.35±0.16 a 1.29±0.17 a
Fv/Fm 0.75±0.02 a 0.67±0.02 b 0.63±0.01 b
Fv/F0 3.11±0.36 a 2.01±0.19 b 2.26±0.14 b
Y(II) 0.38±0.04 b 0.27±0.03 a 0.31±0.04 a
NPQ 1.27±0.12 b 1.71±0.21 a 1.47±0.18 ab
qP 0.77±0.05 a 0.77±0.03 a 0.79±0.04 a
ETR 23.00±2.94 a 16.22±1.64 a 19.00±2.83 a

Figure 5

The change of fluorescence transients under different intensity and time of three cultivars of Pseudosasa japonica leaves under far-red light treatments(A1), (A2) The change of fluorescence transients (A1) and steady-state fluorescence (A2) of green sector in leaf with strips of P. japonica f. akebonosuji under different intensity and time of far-red light treatments; (B1), (B2) The change of fluorescence transients (B1) and steady-state fluorescence (B2) of the virescent leaves of P. japonica f. akebono under different intensity and time of far-red light treatments; (C1), (C2) The change of fluorescence transients (C1) and steady-state fluorescence (C2) of the green leaves of P. japonica under different intensity and time of far-red light treatments. SG, VL and GL see Table 1; Ft: Real-time fluorescence curve."

Figure 6

The change of steady-state fluorescence of 10-10 (intensity-time) of three cultivars of Pseudosasa japonica leaves under far-red light treatmentsSG, VL and GL see Table 1; Ft see Figure 5."

Figure 7

The change of F0′ (minimum fluorescence under the light) of three cultivars of Pseudosasa japonica leaves under different intensity of far-red light treatmentsSG, VL and GL see Table 1; Ft see Figure 5; FR: The intensity of far red light."

1 耿东梅, 单立山, 李毅, Жигунов Анатолий Васильевич (2014). 土壤水分胁迫对红砂幼苗叶绿素荧光和抗氧化酶活性的影响. 植物学报 49, 282-291.
2 桂仁意, 刘亚迪, 郭小勤, 季海宝, 贾月, 余明增, 方伟 (2010). 不同剂量137Cs-γ辐射对毛竹幼苗叶片叶绿素荧光参数的影响. 植物学报 45, 66-72.
3 何冰, 刘玲珑, 张文伟, 万建民 (2006). 植物叶色突变体. 植物生理学通讯 1, 1-9.
4 李鹏民 (2006). 快速叶绿素荧光诱导动力学在植物逆境生理研究中的应用. 博士论文. 泰安: 山东农业大学. pp. 66-73.
5 林世青, 许春辉, 张其德, 徐黎, 毛大璋, 匡廷云 (1992). 叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用. 植物学通报 9, 1-16.
6 欧明明, 蔡伟民 (2005). 铁限制对铜绿微囊藻光系统活性变化的影响. 环境化学 24(6), 22-24.
7 孙鲁龙, 耿庆伟, 邢浩, 杜远鹏, 翟衡 (2017). 低温处理葡萄根系对叶片PSII活性的影响. 植物学报 52, 159-166.
8 唐茜, 施嘉璠 (1997). 川西茶区主栽品种光合强度与叶片结构相关关系的研究. 四川农业大学学报 15(2), 193-198.
9 许大全 (2001). 光合作用效率. 上海: 上海科学技术出版社. pp. 136-150.
10 杨莉, 郭蔼光, 关旭 (2003). 小麦突变体返白系返白阶段叶绿体超微结构变化研究. 西北农业学报 12(4), 64-67.
11 张阿宏, 齐孟文, 张晔晖 (2008). 调制叶绿素荧光动力学参数及其计量关系的意义和公理化讨论. 核农学报 22, 909-912.
12 张宪政 (1986). 植物叶绿素含量测定——丙酮乙醇混合液法. 辽宁农业科学 3, 26-28.
13 赵云, 王茂林, 李江, 张义正 (2003). 幼叶黄化油菜(Brassica napus L.)突变体Cr3529叶绿体超微结构观察. 四川大学学报(自然科学版) 5, 974-977.
14 郑彩霞, 高荣孚 (1999). 光系统I的异质性及其在类囊体膜上分布的研究进展. 北京林业大学学报 21(5), 79-87.
15 钟传飞 (2008). 稳态叶绿素荧光动力学理论构建和常绿阔叶植物越冬光合生理生态研究. 博士论文. 北京: 北京林业大学. pp. 47-49.
16 Deell JR, Murr DP, Wiley L (2003). 1-Methylcyclopropene (1-MCP) increases CO2 injury in apples.Acta Horticul 600, 277-280.
17 Gilmore AM, Hazlett TL, Govindjee (1997). Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: formation of a quenching complex with a short fluorescence life time.Proc Natl Acad Sci USA 92, 2273-2277.
18 Heerden PDRV, Strasser RJ, Krüger GHJ (2010). Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiol Plantarum 121, 239-249.
19 Lichtenthaler HK (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.Methods Enzymol 148, 350-382.
20 Murchie EH, Lawson T (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding so- me new applications.J Exp Bot 64, 3983-3998.
21 Papageorgiou GC, Tsimillimichael M, Stamatakis K (2007). The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint.Photosynth Res 94, 275-290.
22 Schreiber U (2004). Pulse-amplitude-modulation (PAM) fluo- rometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee, eds. Chlorophyll a Fluorescence. Heidelberg: Springer. pp. 279-319.
23 Strasser RJ, Tsimilli-michael M, Srivastava A (2004). Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee, eds. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Dordrecht: Springer. pp. 321-362.
24 Tsimilli-Michael M, Strasser RJ (2008). In vivo assessment of stress impact on Plant’s Vitality: Applications in Detecting and Evaluating the Beneficial Role of Mycorrhization on Host Plants. In: Varma A, eds. Heidelberg: Springer. pp. 679-703.
25 Wang Q, Sullivan RW, Kight A, Henry RL, Huang JR, Jones AM, Korth KL (2004). Deletion of the chloroplast- localized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol 136, 3594-3604.
26 Waters MT, Langdale JA (2009). The making of a chloroplast.EMBO J 28, 2861-2873.
27 Wu JX, Zhang ZG, Zhang Q, Han X, Gu XF, Lu TG (2015). The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping. Front Ge- net 6, 226.
28 Zhu XG, Govindjee, Baker NR, deSturler E, Ort DR, Long SP (2005). Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II.Planta 223, 114-133.
[1] Qing-Hua GUO Yu TianHU qin Ma Kexin Xu Qiuli Yang Qianhui Sun Yumei Li Yanjun Su. The Advances for the New Remote Sensing Technology in Ecosystem Ecology Research [J]. Chin J Plant Ecol, 2020, 44(4生态技术与方法专辑): 0-0.
[2] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[3] Jian-Guo CAI, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plan Ecolo, 2017, 41(5): 570-576.
[4] Da-Yong FAN, Zeng-Juan FU, Zong-Qiang XIE, Rong-Gui LI, Shu-Min ZHANG. A new technology of modulated Chl a fluorescence image: In vivo measurement of the PSII maximum photochemical efficiency and its heterogeneity within leaves [J]. Chin J Plan Ecolo, 2016, 40(9): 942-951.
[5] Zhaoning Gong, Yunbao Fan, Hui Liu, Wenji Zhao. Chlorophyll Fluorescence Response Characteristics of Typical Emergent Plants Under Different Total Nitrogen Gradient [J]. Chinese Bulletin of Botany, 2016, 51(5): 631-638.
[6] LIU Chang,SUN Peng-Sen,LIU Shi-Rong. A review of plant spectral reflectance response to water physiological changes [J]. Chin J Plan Ecolo, 2016, 40(1): 80-91.
[7] ZOU Chang-Ming,WANG Yun-Qing,LIU Ying,ZHANG Xiao-Hong,TANG Shan. Responses of photosynthesis and growth to weak light regime in four legume species [J]. Chin J Plan Ecolo, 2015, 39(9): 909-916.
[8] AN Dong-Sheng,CAO Juan,HUANG Xiao-Hua,ZHOU Juan,DOU Mei-An. Application of Lake-model based indices from chlorophyll fluorescence on sugarcane seedling drought resistance study [J]. Chin J Plan Ecolo, 2015, 39(4): 398-406.
[9] WU Zheng-Feng, SUN Xue-Wu, WANG Cai-Bin, ZHENG Ya-Ping, WAN Shu-Bo, LIU Jun-Hua, ZHENG Yong-Mei, WU Ju-Xiang, FENG Hao, and YU Tian-Yi. Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut [J]. Chin J Plan Ecolo, 2014, 38(7): 740-748.
[10] SHI Sheng-Bo, ZHANG Huai-Gang, SHI Rui, LI Miao, CHEN Wen-Jie, and SUN Ya-Nan. Assessment of photosynthetic photo-inhibition and recovery of PSII photochemical efficiency in leaves of wheat varieties in Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2014, 38(4): 375-386.
[11] Dongmei Geng, Lishan Shan, Yi Li, Жигунов Анатолий Васильевич. Effect of Soil Water Stress on Chlorophyll Fluorescence and Antioxidant Enzyme Activity in Reaumuria soongorica Seedlings [J]. Chinese Bulletin of Botany, 2014, 49(3): 282-291.
[12] FENG Han-Qing, JIAO Qing-Song, TIAN Wu-Ying, SUN Kun, and JIA Ling-Yun. Effects of extracellular ATP on the characteristics of photochemical reaction in bean (Phaseolus vulgaris) leaves under different light intensities [J]. Chin J Plan Ecolo, 2014, 38(10): 1117-1123.
[13] Dengju Chen, Peijun Gao, Xingbo Wu, Yan Gao, Guosheng Wen, Yukui Wang, Rongfu Gao, Rumin Zhang. Chloroplast Ultrastructure and Emission Fluorescence Spectrum Characteristics for Stems of Phyllostachys pubescens [J]. Chinese Bulletin of Botany, 2013, 48(6): 635-642.
[14] Lulu Zhou, Yunlai Tang, Xia Chen, Mei Chen, Dan Wang. Effect of Strontium on Photosynthesis of Leaves in Rape Seedlings [J]. Chinese Bulletin of Botany, 2013, 48(3): 313-319.
[15] YIN Hai-Long and TIAN Chang-Yan. Effects of nitrogen regulation on photosystem II chlorophyll fluorescence characteristics of functional leaves in sugar beet (Beta vulgaris) under salt environment [J]. Chin J Plan Ecolo, 2013, 37(2): 122-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chinese Bulletin of Botany, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chinese Bulletin of Botany, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chinese Bulletin of Botany, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chinese Bulletin of Botany, 1999, 16(04): 439 -443 .
[5] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chinese Bulletin of Botany, 2005, 22(04): 463 -470 .
[6] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chinese Bulletin of Botany, 2012, 47(5): 543 -549 .
[7] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chinese Bulletin of Botany, 2013, 48(4): 447 -460 .
[8] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chinese Bulletin of Botany, 2018, 53(2): 264 -275 .
[9] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .
[10] Cheng Changdu. Proposals on Some Problems to Develop the Agriculture, Forestry, Animal Husbandry and Fishery as well as Sideline Culture from the View-point of Ecological Balance[J]. Chin J Plan Ecolo, 1981, 5(1): 65 -71 .