Chin Bull Bot ›› 2017, Vol. 52 ›› Issue (6): 744-755.doi: 10.11983/CBB16242

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field

Wu Renye1,2, Sun Yuanfen1, Zheng Jingui1,2,*(), Deng Chuanyuan3, Ye Dapeng4, Wang Qingshui1   

  1. 1Fujian Engineering Technology Research Center of Breeding and Utilization for Special Crops, Fuzhou 350002, China
    2Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    3College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    4College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2016-12-06 Accepted:2017-05-04 Online:2018-02-22 Published:2017-11-01
  • Contact: Zheng Jingui E-mail:jingui.zheng@hotmail.com

Abstract:

Under normal conditions, the capacity of plants to generate negative air ions (NAIs) is very weak. However, stimulation of a pulsed electrical field can result in substantial improvement of the ability for NAI generation. We examined NAI generation in Stromanthe sanguinea, Calathea zebrina, and Hippeastrum rutilum in glass chambers under the natural state and under pulsed electrical field and light stimulation and analyzed the shape of stomata. We found variation in NAI generation by plants due to the different combined parameters of the pulsed electrical field. Each plant has its own optimal pulsed electrical field with a combination of parameters for efficient NAI generation: S. sanguinea with A3B3C3 (A3, U=1.5×104 V; B3, T=1.5 s; C3, τ =65 ms), C. zebrina with A3B4C1 (A3, U=1.5×104 V; B4, T=2.0 s; C1,τ =5 ms) and H. rutilum with A4B4C1 (A4, U=2.0×104 V; B4, T=2.0 s; C1, τ=5 ms). With the application of a pulsed electrical field to plants, the higher the voltage, the greater the capacity for NAI generation. With enhanced light intensity, the ability to generate NAI significantly increased with application of a pulsed electrical field. Without the pulsed electrical field, despite the slightly increased NAI concentration with increasing light intensity, NAI concentration did not differ (P>0.05). Finally, NAI generation was closely related to the characteristics of leaf stomata. Furthermore, a greater degree of stomatal opening and stomatal density was associated with stronger capacity to generate NAI.

Key words: negative air ions, electrostimulation, pulsed electrical field, light intensity, stomata

Table 1

Tested plants species"

Code Plants Age (mon- th) Plant height× Grown bread- th (cm)
P1 Syngonium podophyllum 14 20×20
P2 Lilium brownii var. viridulum 13 70×20
P3 Agave sisalana 24 45×30
P4 Stromanthe sanguinea 12 30×30
P5 Cordyline fruticosa 14 60×50
P6 Calathea zebrina 12 40×45
P7 Hippeastrum rutilum 13 60×40
P8 Neottopteris antiqua 14 40×40
P9 Saxifraga stolonifera 12 30×30
P10 Fatsia japonica 12 50×40

Figure 1

Schematic of detecting negative air ions concentration by plant in a sealed chambera: High-voltage pulsed generator; b: Pulse probe; c: Air ions detector; d: Computer; e: Glass chamber; f: Plant; g: Adjustable insulation platform"

Table 2

Factors and levels for orthogonal test"

Level Factors
A (103 V) B (s) C (ms)
1 8 0.5 5
2 10 1.0 35
3 15 1.5 65
4 20 2.0 90

Figure 2

The changes in negative air ions concentration over 24 h for plant varieties under normal conditionCK: P0 soil without plant; P0: Soil; P1-P10 see Table 1."

Table 3

Analysis of negative air ions concentration generated by plants among 24 h in natural conditions (ion·cm-3)"

Code 24 h mini-
mum
24 h maxi-
mum
24 h
mean
Daytime
mean
Nighttime
mean
Max/
Min
(Day mean-night mean)/ Night mean Day mean/Night mean
CK 29 38 32 k 34 31 1.31 0.10 1.1
P0 30 36 33 j 34 32 1.2 0.06 1.06
P1 36 56 46 i 48 44 1.56 0.09 1.09
P2 48 94 63 d 68 57 1.96 0.19 1.19
P3 35 81 58 f 63 53 2.31 0.19 1.19
P4 64 91 76 b 79 74 1.42 0.07 1.07
P5 48 71 57 g 58 57 1.48 0.02 1.02
P6 71 90 81 a 80 83 1.27 -0.04 0.96
P7 56 90 75 c 76 74 1.61 0.03 1.03
P8 39 82 57 g 64 51 2.1 0.25 1.25
P9 44 80 62 e 58 66 1.82 -0.12 0.88
P10 40 58 48 h 48 47 1.45 0.02 1.02

Table 4

Analysis of negative air ions concentration generated by plants upon different combinational parameters of pulsed electrical stimulation (means±SD)"

Treatment Factors Average of negative air ions concentration (ion·cm-3)
A B C P0 P4 P6 P7
A1B1C1 8 0.5 5 36±3 a 452644±21866 n 91±6 a 8605±983 f
A1B2C3 8 1.0 65 38±2 a 471667±21881 n 92±8 a 9581±948 f
A1B3C4 8 1.5 90 39±2 a 535311±25007 l 94±5 a 8559±874 f
A1B4C2 8 2.0 35 44±2 a 494667±27146 m 98±8 a 8832±543 f
A2B1C4 10 0.5 90 39±2 a 795822±53569 k 95±9 a 20200±1478 f
A2B2C2 10 1.0 35 38±2 a 822267±54244 j 88±8 a 22473±1381 f
A2B3C1 10 1.5 5 37±3 a 813022±50909 jk 85±7 a 23236±2467 f
A2B4C3 10 2.0 65 41±3 a 872734±55664 i 91±4 a 21801±1643 f
A3B1C2 15 0.5 35 105±2 a 1564444±119680 d 226±20 a 181311±20261 e
A3B2C4 15 1.0 90 107±2 a 1628244±191548 c 250±40 a 218444±33270 c
A3B3C3 15 1.5 65 109±3 a 1730800±195344 a 233±16 a 191867±32167 de
A3B4C1 15 2.0 5 107±2 a 1670933±187634 b 262±28 a 208067±34590 cd
A4B1C3 20 0.5 65 130±2 a 1186667±103135 f 170±39 a 301933±30237 b
A4B2C1 20 1.0 5 129±5 a 1264000±117184 e 179±18 a 330356±30322 a
A4B3C2 20 1.5 35 134±3 a 1136800±83461 g 215±33 a 322644±29865 ab
A4B4C4 20 2.0 90 140±4 a 1038133±83109 h 164±51 a 318156±36925 ab

Table 5

Analysis between voltage of plants and negative air ions concentration (means±SD)"

Treatment Calathea insignis Calathea zebrina Hippeastrum rutilum
Voltage
(103 V)
NAIC
(ion·cm-3)
Voltage
(103 V)
NAIC
(ion·cm-3)
Voltage
(103 V)
NAIC
(ion·cm-3)
CK 5.13±0.33 a 1757467±218808 a 5.50±0.14 a 260±33 a 4.32±0.11 a 362000±35957 a
A 1.78±0.10 b 2119±88 b 1.44±0.26 b 152±11 a 0.91±0.06 b 706±29 b
B 0.51±0.03 c 89±6 b 0.66±0.04 c 85±6 a 0.50±0.06 c 77±5 b

Table 6

The negative air ion concentration of plants under pulsed electrical field stimulation in different light intensity (means± SD)"

Light
intensity (lx)
Negative air ions concentration (ion·cm-3)
Soil Calathea insignis Calathea zebrina Hippeastrum rutilum
CK S CK S CK S CK S
0 35±2 c 127±3 a 53±2 e 824400±88904 e 76±2 e 156±16 a 66±2 e 202067±24109 c
500 36±2 c 136±2 a 69±3 d 1726200±186594 d 80±4 d 275±28 a 69±3 d 298289±36482 b
1500 37±3 bc 138±2 a 79±2 c 1769911±191872 c 83±3 c 284±28 a 77±2 c 308156±36967 b
3000 37±3 bc 135±2 a 81±3 c 1831378±198645 b 80±3 d 297±30 a 79±5 c 328644±39232 a
6000 43±2 a 140±2 a 90±3 b 1813622±197187 b 106±3 b 296±30 a 93±3 b 328200±38992 a
12000 39±3 b 139±3 a 138±4 a 1895200±205601 a 128±3 a 310±31 a 134±3 a 308156±36967 b

Figure 3

The stomatal shape feature of three plant species under the stimulation of high voltage pulsed electrical field with optimal combinational parameters (The shape feature of three plant species were observed under 40× objectives)(A), (B) The stomatal feature of Stromanthe sanguinea under normal and electrostimulation conditions, separately; (C), (D) The stomatal feature of Calathea zebrina under normal and electrostimulation conditions, separately; (E), (F) The stomatal feature of Hippeastrum rutilum under normal and electrostimulation conditions, separately. Bars=50 μm"

Table 7

The negative air ions concentration and stomata quantitative feature of plants under high voltage pulsed electrical field stimulation (means±SD)"

Plants Treat- ment Length
(μm)
Width
(μm)
Length/
width
Perimeter Area
(μm2)
Stomatal
density
(·mm-2)
Negative air ions
concentration
(ion·cm-3)
P4 CK 9.7±2.47 b 1.58±0.49 b 6.84±3.26 a 21.2±4.92 b 11.98±4.64 b 250.88±31.25 a 80±2 b
S 16.09±2.81a 2.64±0.84 ab 6.89±3.11 a 35.19±5.52 a 33.01±11.27 a 223.16±45.6 b 1740800±195562 a
P6 CK 12.79±2.96 b 1.38±0.4 b 9.93±3.42 a 27.16±6 b 14±5.47 b 84.28±21.45 a 83±3 a
S 19.87±2.84 a 4.27±1 a 4.94±1.49 b 44.62±5.85 a 66.77±18.54 a 87.48±19.28 a 284±29 a
P7 CK 28.07±4.77 b 3.84±0.41 a 7.38±1.43 ab 60.52±9.58 b 84.77±17.88 b 51.14±4.66 a 72±2 b
S 33.75±2.6 a 3.45±0.78 a 10.46±3.62 a 71.43±5.56 a 91.93±23.81 a 54.22±4.06 a 338156±36967 a
[9] 李安伯, 张振军 (1996). 室内空气质量洁净与否的宏观评价法. 中国卫生工程学 5, 25-26.
[10] 李少宁, 王燕, 张玉平, 潘青华, 金万梅, 白金 (2010). 北京典型园林植物区空气负离子分布特征研究. 北京林业大学学报 32, 130-135.
[11] 刘新, 吴林豪, 张浩, 王祥荣 (2011). 城市绿地植物群落空气负离子浓度及影响要素研究. 复旦学报(自然科学版) 50, 206-212.
[12] 穆丹, 梁英辉 (2009). 佳木斯绿地空气负离子浓度及其与气象因子的关系. 应用生态学报 20, 2038-2041.
[13] 秦俊, 王丽勉, 高凯, 胡永红, 王玉勤, 由文辉 (2008). 植物群落对空气负离子浓度影响的研究. 华中农业大学学报 27, 303-308.
doi: 10.3321/j.issn:1000-2421.2008.02.029
[14] 任洪昌, 闵庆文, 王维奇, 王纯, 张永勋 (2014). 福州鼓山茶园不同生境空气负离子浓度及其影响因子. 城市环境与城市生态 27, 1-6.
[15] 邵海荣, 贺庆棠 (2000). 森林与空气负离子. 世界林业研究 13(5), 19-23.
doi: 10.3969/j.issn.1001-4241.2000.05.004
[16] 石彦军, 余树全, 郑庆林 (2010). 6种植物群落夏季空气负离子动态及其与气象因子的关系. 浙江林学院学报 27, 185-189.
doi: 10.3969/j.issn.2095-0756.2010.02.004
[17] 孙继良, 么志红, 何宝华 (2010). 低强度运动匹配负离子对老年高血压患者的影响. 广州医药 41, 19-20.
doi: 10.3969/j.issn.1000-8535.2010.02.009
[18] 王成, 郭二果, 郄光发 (2014). 北京西山典型城市森林内PM2.5动态变化规律. 生态学报 34, 5650-5658.
doi: 10.5846/stxb201301180115
[19] 王薇 (2014). 空气负离子浓度分布特征及其与环境因子的关系. 生态环境学报 23, 979-984.
doi: 10.3969/j.issn.1674-5906.2014.06.011
[20] 王晓磊, 王成 (2014). 城市森林调控空气颗粒物功能研究进展. 生态学报 34, 1910-1921.
doi: 10.5846/stxb201305301239
[21] 王艳英, 邓传远, 郑金贵, 辛贵亮, 吴仁烨 (2014). 植物源负离子发生器室内应用的研究. 广州大学学报(自然科学版) 13, 29-37.
[22] 吴楚材, 郑群明, 钟林生 (2001). 森林游憩区空气负离子水平的研究. 林业科学 37(5), 75-81.
doi: 10.11707/j.1001-7488.20010513
[23] 吴楚材, 钟林生 (1998). 马尾松纯林林分因子对空气负离子浓度影响的研究. 中南林学院学报 18, 70-73.
doi: 10.1017/S0266078400010713
[24] 吴仁烨, 邓传远, 王彬, 黄德冰, 林丽, 黄建民, 郑金贵 (2011a). 具备释放负离子功能室内植物的种质资源研究. 中国农学通报 27(8), 91-97.
[25] 吴仁烨, 邓传远, 辛桂亮, 翁海勇, 杨志坚, 朱帖俊容, 郑金贵 (2014a). 植物释放负离子对室内空气质量影响分析. 安徽农业科学 42, 9491-9494.
doi: 10.3969/j.issn.0517-6611.2014.27.084
[26] 吴仁烨, 邓传远, 杨志坚, 翁海勇, 朱帖俊容, 郑金贵 (2015). 脉冲电场作用对植物释放负离子的影响. 应用生态学报 26, 419-424.
[27] 吴仁烨, 黄德冰, 郭梨锦, 林丽, 黄建民, 邓传远 (2011b). 具备释放负离子功能室内植物的种质资源研究 II. 常态下室内植物负离子的释放. 亚热带农业研究 7, 1-6.
[28] 吴仁烨, 郑金贵, 程祖锌, 朱贵金, 阮晧然, 翁海勇 (2014b). 水稻植株释放负离子研究. 福建农林大学学报(自然科学版) 43, 512-517.
doi: 10.3969/j.issn.1671-5470.2014.05.012
[29] 习岗, 杨运经 (2008). 电磁场对生物体系的非热效应及其作用机理. 大学物理 27(11), 50-52, 63.
doi: 10.3969/j.issn.1000-0712.2008.11.014
[30] 杨运经, 习岗, 刘锴, 张晓辉 (2011). 应用负高压脉冲技术提高植物空气净化能力的探讨. 高电压技术 37, 190-197.
[1] 鲍风宇, 秦永胜, 李荣桓, 周金星, 杨军 (2013). 北京市5种典型城市绿化植物的生态保健功能分析. 中国农学通报 29(22), 26-35.
doi: 10.3969/j.issn.1000-6850.2013.22.006
[2] 陈雷, 孙冰, 谭广文, 李子华, 陈勇, 黄应锋, 廖绍波 (2015). 广州城市绿地植物群落空气负离子特征研究. 西北林学院学报 30, 227-232.
doi: 10.3969/j.issn.1001-7461.2015.01.39
[31] 杨运经, 习岗, 张社奇 (2009). 脉冲电场介导的植物空气负离子发射的倍增效应及其意义. 大学物理 28(12), 39-42.
doi: 10.3969/j.issn.1000-0712.2009.12.013
[32] 曾曙才, 苏志尧, 陈北光 (2007). 广州绿地空气负离子水平及其影响因子. 生态学杂志 26, 1049-1053.
[3] 董莎莎, 胡梦婷, 姚玉婷, 刘鹤, 蒋文伟 (2013). 青山湖不同植物群落空气负离子效应评价. 中国园艺文摘 29(12), 65-66.
doi: 10.3969/j.issn.1672-0873.2013.12.031
[4] 范亚民, 何平, 李建龙, 沈守云 (2005). 城市不同植被配置类型空气负离子效应评价. 生态学杂志 24, 883-886.
[33] 张凯旋, 张建华 (2013). 上海环城林带保健功能评价及其机制. 生态学报 33, 4189-4198.
doi: 10.5846/stxb201209181316
[34] 张万超, 郑金贵, 黄龙飞, 时顺锋, 吴仁烨, 邓传远 (2015). 常态下仙人掌科植物负离子释放量的比较及其与刺数量的关系. 福建农林大学学报(自然科学版) 44, 402-407.
[5] 关蓓蓓, 郑思俊, 崔心红, 张帅, 何小丽, 朱义 (2016). 崇明岛不同生态用地空气负离子分布规律研究. 西北林学院学报 31, 280-285.
doi: 10.3969/j.issn.1001-7461.2016.01.49
[6] 黄向华, 王健, 曾宏达, 陈光水, 钟羡芳 (2013). 城市空气负离子浓度时空分布及其影响因素综述. 应用生态学报 24, 1761-1768.
[7] 李安伯 (1983). 空气离子生物学效应研究的进展. 西安医学院学报 4, 103-108.
[8] 李安伯 (2001). 空气离子实验与临床研究新进展. 中华理疗杂志 24(2), 118-119.
[35] 张万超, 郑俊鸣, 丁旭玲, 彭东辉, 吴仁烨, 邓传远, 郑金贵 (2016). 3种仙人掌科植物负离子释放量与释放通道的相关性研究. 热带作物学报 37, 1298-1305.
doi: 10.3969/j.issn.1000-2561.2016.07.010
[36] 张亚冰, 王秀云, 洪亚平 (2008). 植物叶表皮制片方法改进. 安徽农业科学 36, 12683, 12689.
doi: 10.3969/j.issn.0517-6611.2008.29.009
[37] 钟林生, 吴楚材, 肖笃宁 (1998). 森林旅游资源评价中的空气负离子研究. 生态学杂志 17, 56-60.
doi: 10.1088/0256-307X/15/12/025
[38] Griffin JE, Kornblueh IH (1962). Ionization of the air.Int J Biometeorol 6, 29-32.
doi: 10.1007/BF02187010
[39] Kondrashove MN, Grigorenko EV, Tikhonov AN, Sirota
[40] TV, Temnov AV, Stavrovskaja IG, Kosyakova NI, Lange NV, Tikhonov VP (2000). The primary physico- chemical mechanism for the beneficial biological/medical effects of negative air ions.IEEE Trans Plasma Sci 28, 230-237.
doi: 10.1109/27.842910
[41] Kosenko EA, Kaminsky YG, Stavrovskaya IG, Sirota TV, Kondrashova MN (1997). The stimulatory effect of negative air ions and hydrogen peroxide on the activity of superoxide dismutase.FEBS Lett 410, 309-312.
doi: 10.1016/S0014-5793(97)00651-0 pmid: 9237652
[42] Krueger AP (1962). Air ions and physiological function.J Gen Physiol 45, 233-241.
doi: 10.1085/jgp.45.4.233 pmid: 01
[43] Krueger AP (1972). Are air ions biologically significant? A review of a controversial subject.Int J Biometeorol 16, 313-322.
doi: 10.1007/BF01553616 pmid: 4571990
[44] Krueger AP (1985). The biological effects of air ions.Int J Biometeorol 29, 205-206.
doi: 10.1007/BF02189651 pmid: 4055123
[45] Krueger AP, Reed EJ (1976). Biological impact of small air ions.Science 193, 1209-1213.
doi: 10.1126/science.959834 pmid: 959834
[46] Liang H, Chen XS, Yin JG, Da LJ (2014). The spatial- temporal pattern and influencing factors of negative air ions in urban forests, Shanghai, China.J For Res 25, 847-856.
doi: 10.1007/s11676-014-0475-9
[47] Nakane H, Asami O, Yamada Y, Ohira H (2002). Effect of negative air ions on computer operation, anxiety and Sali- vary chromogranin A-like immunoreactivity.Int J Psycho- physiol 46, 85-89.
doi: 10.1016/S0167-8760(02)00067-3 pmid: 12374649
[48] Tikhonov VP, Tsvetkov VD, Litvinova EG, Sirota TV, Kondrashova MN (2002). Generation of negative air ions by wheat seedlings in a high voltage electrization of soil.Biofizika 47, 130-134.
pmid: 11855283
[49] Tikhonov VP, Tsvetkov VD, Litvinova EG, Sirota TV, Kondrashova MN (2004). Generation of negative air ions by plants upon pulsed electrical stimulation applied to soil.Russ J Plant Physiol 51, 414-419.
doi: 10.1023/B:RUPP.0000028690.74805.e2
[50] Wakamura T, Sato M, Sato A, Dohi T, Ozaki K, Asou N, Hagata S, Tokura H (2004). A preliminary study on influence of negative air ions generated from pajamas on core body temperature and salivary IgA during night sleep.Int J Occup Med Environ Health 17, 295-298.
doi: 10.1016/j.chemgeo.2012.09.041 pmid: 15387086
[51] Wang J, Li SH (2009). Changes in negative air ions concentration under different light intensities and development of a model to relate light intensity to directional ch- ange.J Environ Manage 90, 2746-2754.
doi: 10.1016/j.jenvman.2009.03.003 pmid: 19356839
[52] Wu CF, Lai CH, Chu HJ, Lin WJ (2011). Evaluating and mapping of spatial air ion quality patterns in a residential garden using a geostatistic method.Int J Environ Res Pub- lic Health 8, 2304-2319.
doi: 10.3390/ijerph8062304 pmid: 3138026
[1] Wang Yajing, Zhang Xinying, Huang Guirong, Liu Xiaoying, Guo Rui, Gu Fengxue, Zhong Xiuli, Mei Xurong. Characteristics of Phosphatidic Acid and the Underlying Mechanisms of ABA-induced Stomatal Movement in Plants [J]. Chin Bull Bot, 2019, 54(2): 245-254.
[2] Zhang Ping, Hao Xiuying, Yu Ruifeng, Zhou Hongmei, Zhu Jianjun. A Tentative Method for Monitoring the Dynamic Features of Transpiration Regulation in Ferula krylovii Leaves [J]. Chin Bull Bot, 2018, 53(3): 353-363.
[3] Hongliang Wang, Siyi Guo, Pengtao Wang, Chunpeng Song. Research Progress in Stomatal Development Mechanism [J]. Chin Bull Bot, 2018, 53(2): 164-174.
[4] ZHANG Zhen-Zhen, ZHAO Ping, ZHAO Xiu-Hua, ZHANG Jin-Xiu, ZHU Li-Wei, OUYANG Lei, ZHANG Xiao-Yan. Impact of environmental factors on the decoupling coefficient and the estimation of canopy stomatal conductance for ever-green broad-leaved tree species [J]. Chin J Plant Ecol, 2018, 42(12): 1179-1191.
[5] Dan-Dan LUO, Chuan-Kuan WANG, Ying JIN. Plant water-regulation strategies: Isohydric versus anisohydric behavior [J]. Chin J Plan Ecolo, 2017, 41(9): 1020-1032.
[6] Jing-Xin XU, You-Fei ZHENG, Bo-Ru MAI, Hui ZHAO, Zhong-Fang CHU, Ji-Qing HUANG, Yue YUAN. Characteristics and partitioning of ozone dry deposition measured by eddy-covariance technology in a winter wheat field [J]. Chin J Plan Ecolo, 2017, 41(6): 670-682.
[7] Hong-Tao XIE, Mu-Kui YU, Xiang-Rong CHENG. Effects of light intensity variation on nitrogen and phosphorus contents, allocation and limitation in five shade-enduring plants [J]. Chin J Plan Ecolo, 2017, 41(5): 559-569.
[8] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development [J]. Chin Bull Bot, 2017, 52(2): 235-240.
[9] Jia-Zhi FAN, Dan WANG, Ya-Lin HU, Pan-Pan JING, Peng-Peng WANG, Jiquan CHEN. Optimal stomatal behavior theory for simulating stomatal conductance [J]. Chin J Plan Ecolo, 2016, 40(6): 631-642.
[10] Chen-Song HAO, Qing-Kai WANG, Xiao-Ling SUN. Effects of light heterogeneity on leaf anatomical structure in Buchloe dactyloides [J]. Chin J Plan Ecolo, 2016, 40(3): 246-254.
[11] Bei-Bei DUAN, Cheng-Zhang ZHAO, Ting XU, Hui-Ling ZHENG, Wei FENG, Ling HAN. Correlation analysis between vein density and stomatal traits of Robinia pseudoacacia in different aspects of Beishan Mountain in Lanzhou [J]. Chin J Plan Ecolo, 2016, 40(12): 1289-1297.
[12] YUAN Min,BU Zhao-Jun,LIU Chao,MA Jin-Ze,WANG Sheng-Zhong. Effects of water level and light intensity on capsule production dynamics of Sphagnum capillifolium [J]. Chin J Plan Ecolo, 2015, 39(5): 501-507.
[13] Min Ma, Aijing Liu, Jie Hu, Junmin He. Role of PI3P and Its Relationship with H2O2 or Nitric Oxide in Darkness-induced Stomatal Closure in Vicia faba [J]. Chin Bull Bot, 2015, 50(5): 583-590.
[14] JIN Ying,WANG Chuan-Kuan. Trade-offs between plant leaf hydraulic and economic traits [J]. Chin J Plan Ecolo, 2015, 39(10): 1021-1032.
[15] Yongmei Che, Dandan Zhang, Lixia Hou, Lanxiang Wang, Xin Liu. Extracellular Adenosine Triphosphate Functions Downstream of Hydrogen Sulfide in Ethylene-induced Stomatal Closure in Arabidopsis thaliana [J]. Chin Bull Bot, 2015, 50(1): 22-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Bingyu Zhang;Xiaohua Su*;Xiangming Zhou. Gene Regulation in Flower Development in the Forest[J]. Chin Bull Bot, 2008, 25(04): 476 -482 .
[2] Cai Ji-jiong and Wang Zi-qing. A Preliminary Report on Pollen Morphology and Constituent of Pinus massoniana[J]. Chin Bull Bot, 1988, 5(03): 167 -169 .
[3] Zhang Fu-ren and Mo Ri-gen. A Simple Technique for Observing Fracture Surface of Pollen Grains by SEM[J]. Chin Bull Bot, 1992, 9(03): 63 -64 .
[4] MA Yue-Ping CHEN Fan DAI Si-Lan. Studies of LEAFY Homologue Genes in Higher Plants[J]. Chin Bull Bot, 2005, 22(05): 605 -613 .
[5] Lin Zhong-Ping. Isolating of DNA from Plant Materials[J]. Chin Bull Bot, 1984, 2(04): 44 -46 .
[6] Liu Rong-zhen and Wang Hou. The Effect of Ammonia Humic Acid Fertilizers on the Activity of End-Group Oxidase of Rice Seeding in Sludge[J]. Chin Bull Bot, 1985, 3(06): 21 -23 .
[7] LI Xin-Rong;CHEN Zhong-Xin;CHEN Xu-Dong and DONG Xue-Jun. Study on the Interconnections Among Several Communities of Desert Shrubs in West Ordos Plateau[J]. Chin Bull Bot, 1998, 15(01): 56 -62 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 45 .
[9] Li Ru-juan;Shang Zong-yan and Zhang Ji-zu. The Chromosome Observation on 3 Species in the Genus Gynostemma[J]. Chin Bull Bot, 1989, 6(04): 245 -247 .
[10] Tai Wang;Qian Qian;Ming Yuan;Xiaojing Wang;Weicai Yang;Lijia Qu;Hongzhi Kong;Yinong Xu;Gaoming Jiang;Kang Chong. Research Advances on Plant Science in China in 2009[J]. Chin Bull Bot, 2010, 45(03): 265 -306 .