Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (1): 23-36.doi: 10.11983/CBB18064

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Heterologous Overexpression of Autophagy-related Gene OsATG8b from Rice Confers Tolerance to Nitrogen/Carbon Starvation and Increases Yield in Arabidopsis

Zhen Xiaoxi,Liu Haoran,Li Xin,Xu Fan(),Zhang Wenzhong()   

  1. Key Laboratory of Northern Japonica Rice Genetics and Breedings, Ministry of Education, Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agriculture University, Shenyang 110866, China
  • Received:2018-03-12 Accepted:2018-07-16 Online:2019-07-31 Published:2019-01-01
  • Contact: Xu Fan,Zhang Wenzhong E-mail:celiafanfan@163.com;zwzhong@126.com

Abstract:

Nitrogen is an essential element for plant growth and development and plays an important role in plant yield and quality. Autophagy is a conserved degradation-recycle pathway of cellular components in eukaryotes that plays an important role in nitrogen remobilization during plant growth and grain formation. We identified an autophagy core gene OsATG8b in rice and obtained 2 independent 35S-OsATG8b transgenic Arabidopsis homozygous lines. The expression of OsATG8b responded to nitrogen starvation in rice. Overexpression of OsATG8b promoted the growth and development of transgenic Arabidopsis, with rosette leaves larger than wild-type leaves. In addition, the yield increased significantly, by 15.16%. In addition, overexpression of OsATG8b could significantly enhance autophagic activity in leaves of transgenic Arabidopsis under nitrogen deficiency and effectively alleviate the growth inhibition of transgenic Arabidopsis caused by nitrogen and carbon stress. OsATG8b may be a good candidate gene for increasing nitrogen use efficiency and yield.

Key words: autophagy, OsATG8b, nitrogen remobilization, yield

Table 1

The information of primers"

Primer name Sequence (5′-3′) Function
cOsATG8b-F CCATTCAAGTGGATGGCCAAGAGCTCGTTCAAGC Gene cloning
cOsATG8b-R GGTGACCTAGAGCAGCCCAAAGGTGTTCTCG Gene cloning
cpOsATG8b-F AAGCTTAAAATTAAATAAGACGAACAGTCAAACG Gene cloning
cpOsATG8b-R CCATGGCGCTCCTTCCTGCACACAAT Gene cloning
rtOsATG8b-F GCTGATCTTACCGTTGGGCA Real-time RT-PCR
rtOsATG8b-R ATCAGAGCAGCTGTTGGTGG Real-time RT-PCR
rtAtAMT1-F GCCTCTGCTGACTACTCCAACTT Real-time RT-PCR
rtAtAMT1-R GACCAGAACCAGTGAGAGACGA Real-time RT-PCR
rtAtNR1-F AGGATGGGCTAGTAAGCATAAGG Real-time RT-PCR
rtAtNR1-R GCAAACTGAATCATAGGCGGTG Real-time RT-PCR
rtAtGS2-F CACCAAACCTTACTCTCTGACA Real-time RT-PCR
rtAtGS2-R CACTATCTTCACCAGGTGCTTG Real-time RT-PCR
rtAtGDH1-F GCTTTAGCAGCAACAAACAGAA Real-time RT-PCR
rtAtGDH1-R TGAGCCAATGCGTTCACTTC Real-time RT-PCR
rtACTIN1-F ACCATTGGTGCTGAGCGTTT Real-time RT-PCR
rtACTIN1-R CGCAGCTTCCATTCCTATGAA Real-time RT-PCR
rtTIP41-F GTATGAAGATGAACTGGCTGACAAT Real-time RT-PCR
rtTIP41-R ATCAACTCTCAGCCAAAATCGCAAG Real-time RT-PCR

Figure 1

Identification of OsATG8b as a nitrogen deficiency inducible/responsive gene in leaves and roots of rice seedlings (A) The rice seedlings cultured with N-sufficient (NS) solution for 14 days and transferred to the same NS solution, low N (NL) solution and the N-deficient (ND) solution, the expression of OsATG8b gene in leaves after 1 day and 3 days treatment; (B) The expression of OsATG8b gene in roots after 1 day and 3 days treatment. Values are means±SD, n=16, three biological replicates were performed. ** indicate significant differences in NS solution compared with NL and ND solution (P<0.01) (Student’s t-test)."

Table 2

Bolting and flowering times of the wild-type and 35S-OsATG8b transgenic Arabidopsis"

WT L-13 L-14
Bloting time (d) 36.56±1.58 30.78±2.07** 31.39±1.91**
Flowering time (d) 42.67±1.75 35.94±1.98** 36.61±1.94**

Table 3

Yield related characteristics of the wild-type and 35S-OsATG8b transgenic Arabidopsis"

Total number of siliques Yield per plant (mg) Thousand grain weight (mg)
WT 35.74±3.86 85.34±7.89 14.87±0.23
L-13 46.26±3.13** 100.13±6.02** 16.36±0.21**
L-14 48.22±3.62** 99.77±5.76** 17.54±0.41**

Figure 2

Over-expression of OsATG8b promotes growth and development of transgenic Arabidopsis 8-day-old seedlings were transferred to vermiculite-nutritional soil (1:3, v/v). (A) Expression level of OsATG8b in 14-day-old seedlings of 35S-OsATG8b transgenic lines and wild type (WT); (B) Panels from top to bottom show phenotypic observations of transgenic lines and WT of Arabidopsis at 10, 17 and 24 days after transfer to soil, respectively; (C) Phenotype of transgenic lines and WT at 42 days after transfer to soil; (D) The maximum rosette radius of 35S-OsATG8b transgenic lines and WT at different seedling age; (E) The plant height; (F) The total chlorophyll content; (G) The soluble protein content. Days: Days after germination. Values are means±SD, n=24, * P<0.05, ** P<0.01 (Student’s t-test), three biological replicates were performed. Bars=1 cm"

Figure 3

Overexpression of OsATG8b enhances tolerance to N deficiency in transgenic Arabidopsis (A) 7-day-old seedlings of 35S-OsATG8b transgenic lines and wild type (WT) were transferred to 1/2MS medium for horizontal culture with sufficient (NS) or deficient (ND) N for 9 days. (B)-(D) The fresh weight, chlorophyll content and soluble protein content in rosette leaves of WT and 35S-OsATG8b transgenic Arabidopsis under NS or ND for 9 days, respectively; (E) The phenotype of 7-day-old seedlings of 35S-OsATG8b transgenic lines and WT were transferred to vertical plates with NS or ND for 9 days; (F)-(H) The primary root length, the shoot weight and the root weight of WT and transgenic Arabidopsis lines under NS or ND for 9 days, respectively; (I), (J) 10-day-old seedlings of ProOsATG8b-GUS transgenic Arabidopsis were transferred to ND and 10 μmol·L-1 SA for 24 h, respectively. Mock represented that the seedlings without treated. Values are means±SD, n=16, * and ** indicate significant (P<0.05) and extremely significant (P<0.01) differences between transgenic lines and WT (Student’s t-test), three biological replicates were performed. Bars=5 mm"

Figure 4

Overexpression of OsATG8b in Arabidopsis enhanced tolerance to carbon starvation induced by dark treatment (A) 7-day-old seedlings of 35S-OsATG8b transgenic lines and wild type (WT) were transferred to darkness for 10 days (The left is before treatment, and the right is after treatment); (B) The chlorophyll content determination. Values are means±SD, n=10, * indicate significant difference between transgenic lines and WT (P<0.05) (Student’s t-test), three biological replicates were performed. Bars=5 mm"

Figure 5

Overexpression of OsATG8b in Arabidopsis enhanced the autophagic activity under N deficient condition 7-day-old seedlings of transgenic line (L-14) and wild type (WT) were transferred to in N-deficient (ND) liquid medium with 1 μmol·L-1 ConA for 12 h, MDC-stained autophagosomes in leaves were observed by confocal microscopy. Bars=10 μm"

Figure 6

Overexpression of OsATG8b in Arabidopsis changes the expression of genes in nitrogen metabolic 7-day-old seedlings of transgenic lines and wild type (WT) were transferred to 1/2MS medium with sufficient (NS) or deficient (ND) nitrogen for 14 days. (A) The expression of genes related to nitrogen metabolic in rosette leaves of 35S-OsATG8b transgenic lines and WT; (B) The expression of genes related to nitrogen metabolic in roots of 35S-OsATG8b transgenic lines and WT. Values are means±SD, n=10, * and ** indicate significant (P<0.05) and extremely significant (P<0.01) differences between transgenic lines and WT (Student’s t-test), respectively, three biological replicates were performed."

1 黄晓, 李发强 ( 2016). 细胞自噬在植物细胞程序性死亡中的作用. 植物学报 51, 859-862.
doi: 10.11983/CBB16011
2 景红娟, 周广舟, 谭晓荣, 平康康, 任雪建 ( 2012). 活性氧对植物自噬调控的研究进展. 植物学报 47, 534-542.
doi: 10.3724/SP.J.1259.2012.00534
3 刘洋, 张静, 王秋玲, 侯岁稳 ( 2018). 植物细胞自噬研究进展. 植物学报 53, 5-16.
4 任晨霞, 龚清秋 ( 2014). 细胞自噬在植物碳氮营养中作用的研究进展. 中国细胞生物学学报 36, 407-414.
5 Arnon DI ( 1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.Plant Physiol 24, 1-15.
6 Avila-Ospina L, Moison M, Yoshimoto K, Masclaux- Daubresse C ( 2014). Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65, 3799-3811.
7 Biederbick A, Kern HF, Els?sser HP ( 1995). Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles.Eur J Cell Biol 66, 3-14.
doi: 10.1089/dna.1995.14.87 pmid: 7750517
8 Bradford MM ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
doi: 10.1016/0003-2697(76)90527-3 pmid: 942051
9 Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang CJ, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V ( 2011). High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23, 873-894.
10 Chardon F, No?l V, Masclaux-Daubresse C ( 2012). Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J Exp Bot 63, 3401-3412.
doi: 10.1093/jxb/err353 pmid: 22231501
11 Clough SJ, Bent AF ( 1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.Plant J 16, 735-743.
12 Contento AL, Xiong Y, Bassham DC ( 2005). Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J 42, 598-608.
doi: 10.1111/j.1365-313X.2005.02396.x pmid: 15860017
13 Feng YC, He D, Yao ZY, Klionsky DJ ( 2014). The machi- nery of macroautophagy. Cell Res 24, 24-41.
14 Good AG, Shrawat AK, Muench DG ( 2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9, 597-605.
doi: 10.1016/j.tplants.2004.10.008 pmid: 15564127
15 Guiboileau A, Avila-Ospina L, Yoshimoto K, Soulay F, Azzopardi M, Marmagne A, Lothier J, Masclaux- Daubresse C ( 2013). Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. New Phytol 199, 683-694.
16 Guiboileau A, Yoshimoto K, Soulay F, Bataillé MP, Avice JC, Masclaux-Daubresse C ( 2012). Autophagy machi- nery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol 194, 732-740.
17 Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T ( 2008). Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process.Plant Physiol 148, 142-155.
doi: 10.1104/pp.108.122770
18 Izumi M, Hidema J, Makino A, Ishida H ( 2013). Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiol 161, 1682-1693.
doi: 10.2307/41942799 pmid: 23457226
19 Izumi M, Hidema J, Wada S, Kondo E, Kurusu T, Kuchitsu K, Makino A, Ishida H ( 2015). Establishment of monito- ring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiol 167, 1307-1320.
doi: 10.1104/pp.114.254078 pmid: 25717038
20 Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J ( 2007). In winter wheat ( Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers.Field Crops Res 102, 22-32.
doi: 10.1016/j.fcr.2007.01.002
21 Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA ( 2011). A holistic view of nitrogen acquisition in plants. J Exp Bot 62, 1455-1466.
22 Krapp A ( 2015). Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25, 115-122.
doi: 10.1016/j.pbi.2015.05.010 pmid: 26037390
23 Li FQ, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, Vierstra RD ( 2015 a). Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 27, 1389-1408.
doi: 10.1105/tpc.15.00158 pmid: 25944100
24 Li WW, Chen M, Wang EH, Hu LQ, Hawkesford MJ, Zhong L, Chen Z, Xu ZS, Li LC, Zhou YB, Guo CH, Ma YZ ( 2016). Genome-wide analysis of autophagy-associated genes in foxtail millet ( Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.BMC Genomics 17, 797.
doi: 10.1186/s12864-016-3113-4 pmid: 5062844
25 Li WW, Chen M, Zhong L, Liu JM, Xu ZS, Li LC, Zhou YB, Guo CH, Ma YZ ( 2015 b). Overexpression of the autophagy-related gene SiATG8a from foxtail millet( Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Biochem Biophys Res Com- mun 468, 800-806.
26 Liu D, Gong QQ, Ma YY, Li PL, Li JP, Yang SH, Yuan LL, Yu YQ, Pan DD, Xu F, Wang NN ( 2010). Cpseca, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. J Exp Bot 61, 1655-1669.
doi: 10.1093/jxb/erq033 pmid: 20194926
27 Liu YM, Bassham DC ( 2012). Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63, 215-237.
doi: 10.1146/annurev-arplant-042811-105441 pmid: 22242963
28 Makino A, Osmond B ( 1991). Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol 96, 355-362.
doi: 10.1104/pp.96.2.355 pmid: 16668193
29 Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A ( 2010). Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105, 1141-1157.
doi: 10.1093/aob/mcq028 pmid: 2887065
30 Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M ( 2008). Leaf nitrogen remobilisation for plant development and gr- ain filling. Plant Biol 10, 23-36.
doi: 10.1111/j.1438-8677.2008.00097.x pmid: 18721309
31 Meyer C, Stitt M ( 2001). Nitrate reduction and signaling. In: Lea PJ, Morot-Gaudry JF, eds. Plant Nitrogen. Berlin, Heidelberg: Springer. pp. 37-59.
32 Moriyasu Y, Ohsumi Y ( 1996). Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111, 1233-1241.
doi: 10.1104/pp.111.4.1233 pmid: 12226358
33 Ohsumi Y ( 2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211-216.
34 Otegui MS, Noh YS, Martínez DE, Vila Petroff MG, Staehelin LA, Amasino RM, Guiamet JJ ( 2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41, 831-844.
doi: 10.1111/j.1365-313X.2005.02346.x pmid: 15743448
35 Patrick JW, Offler CE ( 2001). Compartmentation of transport and transfer events in developing seeds. J Exp Bot 52, 551-564.
doi: 10.1093/jexbot/52.356.551 pmid: 11373304
36 Rentsch D, Schmidt S, Tegeder M ( 2007). Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581, 2281-2289.
doi: 10.1016/j.febslet.2007.04.013 pmid: 17466985
37 Roberts IN, Caputo C, Criado MV, Funk C ( 2012). Senescence-associated proteases in plants. Physiol Plant 145, 130-139.
doi: 10.1111/j.1399-3054.2012.01574.x pmid: 22242903
38 Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G ( 2008). An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J Exp Bot 59, 4029-4043.
doi: 10.1093/jxb/ern244 pmid: 2576633
39 Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD ( 2005). Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways.Plant Physiol 138, 2097-2110.
40 Tsukada M, Ohsumi Y ( 1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae.FEBS Lett 333, 169-174.
41 Wada S, Hayashida Y, Izumi M, Kurusu T, Hanamata S, Kanno K, Kojima S, Yamaya T, Kuchitsu K, Makino A, Ishida H ( 2015). Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiol 168, 60-73.
42 Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A ( 2009). Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149, 885-893.
doi: 10.1104/pp.108.130013
43 Walch-Liu P, Filleur S, Gan YB, Forde BG ( 2005). Signaling mechanisms integrating root and shoot responses to ch- anges in the nitrogen supply. Photosynth Res 83, 239-250.
doi: 10.1007/s11120-004-2080-9 pmid: 16143854
44 Wang P, Sun X, Jia X, Wang N, Gong XQ, Ma FW ( 2016). Characterization of an autophagy-related gene MdATG8i from apple.Front Plant Sci 7, 720.
doi: 10.3389/fpls.2016.00720 pmid: 4879346
45 Wang Y, Yu BJ, Zhao JP, Guo JB, Li Y, Han SJ, Huang L, Du YM, Hong YG, Tang DZ, Liu YL ( 2013). Autophagy contributes to leaf starch degradation. Plant Cell 25, 1383-1399.
46 Xia KF, Liu T, Ouyang J, Wang R, Fan T, Zhang MY ( 2011). Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice ( Oryza sativa L.).DNA Res 18, 363-377.
doi: 10.1093/dnares/dsr024 pmid: 21795261
47 Xia TM, Xiao D, Liu D, Chai WT, Gong QQ, Wang NN ( 2012). Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis.PLoS One 7, e37217.
48 Yang XC, Bassham DC ( 2015). New insight into the mechanism and function of autophagy in plant cells. Int Rev Cell Mol Biol 320, 1-40.
doi: 10.1016/bs.ircmb.2015.07.005 pmid: 26614870
49 Yao ZY, Delorme-Axford E, Backues SK, Klionsky DJ ( 2015). Atg41/Icy2 regulates autophagosome formation. Autophagy 11, 2288-2299.
doi: 10.1080/15548627.2015.1107692 pmid: 26565778
50 Yoshimoto K ( 2012). Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol 53, 1355-1365.
doi: 10.1093/pcp/pcs099 pmid: 22764279
51 Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y ( 2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983.
doi: 10.1105/tpc.104.025395 pmid: 15494556
52 Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, OhsumiY, Shirasu K ( 2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21, 2914-2927.
[1] Qianqian Guo Wenbin Zhou. Advances in the Mechanism Underlying Plant Response to Stress Combination(Revised) [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[2] yan jianbing. A teosinte rare allele increases maize plant density and yield [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[3] wu changyin. Ef-cd, encoding a long noncoding RNA, shortens duration of maturity without yield penalty in rice [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[4] Ma Danying, Ji Dongchao, Xu Yong, Chen Tong, Tian Shiping. Advances in the Regulation on Autophagy by Reactive Oxygen Species in Plant Cells [J]. Chin Bull Bot, 2019, 54(1): 81-92.
[5] Ai Wenqin, Jiang Hanyuan, Li Xinxin, Liao Hong. An Efficient Nutrient Solution System to Study Symbiotic Nitrogen Fixation in Soybean [J]. Chin Bull Bot, 2018, 53(4): 519-527.
[6] Wang Yucai, Zhang Hengjia, Deng Haoliang, Wang Shijie, Ba Yuchun. Effect of Regulated Deficit Irrigation on Water Use and Yield of Isatis indigotica [J]. Chin Bull Bot, 2018, 53(3): 322-333.
[7] Yang Liu, Jing Zhang, Qiuling Wang, Suiwen Hou. Research Progress in Plant Autophagy [J]. Chin Bull Bot, 2018, 53(1): 5-16.
[8] Qun LI, Cheng-Zhang ZHAO, Lian-Chun ZHAO, Jian-Liang WANG, Wei-Tao ZHANG, Wen-Xiu YAO. Empirical relationship between specific leaf area and thermal dissipation of Phragmites australis in salt marshes of Qinwangchuan [J]. Chin J Plan Ecolo, 2017, 41(9): 985-994.
[9] Xiaoli Zhang, Ping Li, Caiyun Zhou, Mingxia Chen, Xiting Zhao, Mingjun Li. Growth Characters, Yield and Quality of Virus-free Rehmannia glutinosa Seedlings in the Field [J]. Chin Bull Bot, 2017, 52(4): 474-479.
[10] Cheng-Yan ZHENG, Ai-Xing DENG, Hojatollah LATIFMANESH, Zhen-Wei SONG, Jun ZHANG, Li WANG, Wei-Jian ZHANG. Warming impacts on the dry matter accumulation, and translocation and nitrogen uptake and utilization of winter wheat on the Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2017, 41(10): 1060-1068.
[11] Yuliang Liu, Shuzhi Zheng. Major Domestication Traits of Yield in Rice [J]. Chin Bull Bot, 2017, 52(1): 113-121.
[12] Dan WANG, Yun-Zhou QIAO, Bao-Di DONG, Jing GE, Ping-Guo YANG, Meng-Yu LIU. Differential effects of diurnal asymmetric and symmetric warming on yield and water utilization of soybean [J]. Chin J Plan Ecolo, 2016, 40(8): 827-833.
[13] Xiao Huang, Faqiang Li. Roles of Autophagy in Plant Programmed Cell Death [J]. Chin Bull Bot, 2016, 51(6): 859-862.
[14] Fei Liu,Dongsheng Zou,Yelan Yu,Zhanqiang Zhu,Shaoping Wu,Yufeng Zhu. Habitat features and principal economic characteristics of Eulaliopsis binata germplasm resources [J]. Biodiv Sci, 2016, 24(12): 1400-1407.
[15] ZOU Chang-Ming,WANG Yun-Qing,LIU Ying,ZHANG Xiao-Hong,TANG Shan. Responses of photosynthesis and growth to weak light regime in four legume species [J]. Chin J Plan Ecolo, 2015, 39(9): 909-916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Long-Long, WU Yan-Ru. Species diversity of bees in different habitats in Xishuangbanna tropical forest region[J]. Biodiv Sci, 1998, 06(3): 197 -204 .
[2] Pengfei Jiang, Shiliang Wang, Aziz Ul Ikram, Zuntao Xu, Haiyang Jiang, Beijiu Cheng and Yong Ding. SDG721 and SDG705 are required for rice growth[J]. J Integr Plant Biol, 2018, 60(7): 530 -535 .
[3] WEN Xue-Fa, ZHANG Shi-Chun, SUN Xiao-Min, YU Gui-Rui. RECENT ADVANCES IN H218O ENRICHMENT IN LEAF WATER[J]. Chin J Plan Ecolo, 2008, 32(4): 961 -966 .
[4] SHEN Ze-Hao, FANG Jing-Yun. Niche Comparison of two Fagus Species Based on the Topographic Patterns of Their Populations[J]. Chin J Plan Ecolo, 2001, 25(4): 392 -398 .
[5] LI Jun, WANG Xue-Chun, SHAO Ming-An, ZHAO Yu-Juan, LI Xiao-Fang. Simulation of biomass and soil desiccation of Robinia pseudoacacia forestlands on semi-arid and semi-humid regions of China’s Loess Plateau[J]. Chin J Plan Ecolo, 2010, 34(3): 330 -339 .
[6] LIU Guang-Cai, YANG Qi-Feng, LI Long, SUN Jian-Hao. INTERCROPPING ADVANTAGE AND CONTRIBUTION OF ABOVE- AND BELOW-GROUND INTERACTIONS IN WHEAT-MAIZE INTERCROPPING[J]. Chin J Plan Ecolo, 2008, 32(2): 477 -484 .
[7] YU Hua, Bee-Lian ONG. Diurnal Photosynthesis and Carbon Economy of Acacia mangium in English[J]. Chin J Plan Ecolo, 2003, 27(5): 624 -630 .
[8] Yihao Shi, Jiaying Huang, Tianshu Sun, Xuefei Wang, Chenqi Zhu, Yuxi Ai and Hongya Gu. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana[J]. J Integr Plant Biol, 2017, 59(2): 118 -133 .
[9] Hong Jian ming, Huang Qing ni, Qiu Ze sheng, Liu Xiang lin, Yin Li ping and Chai Xiao qing. Studies on Nitrate Reductase in Plasma Membrane of Maize Roots[J]. J Integr Plant Biol, 1995, 37(12): .
[10] TAN Ying-, Wang-Zhi-, Sui-Xue-Yi-, Hu-Guang-Wan. The Systematic Placement of the Monotypic Genus Paraisometrum (Gesneriaceae) Based on Molecular and Cytological Data[J]. Plant Diversity, 2011, 33(5): 465 -476 .