Chin Bull Bot ›› 2017, Vol. 52 ›› Issue (2): 188-201.doi: 10.11983/CBB16054

Previous Articles     Next Articles

Whole-genome Analysis of CCT Gene Family and Their Responses to Phytohormones in Aegilops tauschii

Zheng Jun1, Qiao Ling1, Zhao Jiajia1, Qiao Linyi2, Zhang Shichang2, Chang Jianzhong2, Tang Caiguo3,*(), Yang Sanwei1,*()   

  1. 1Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen 041000, China
    2Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
    3Hefei Institutes of Physical Science, Institute of Technical Biology & Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2016-03-18 Accepted:2016-08-04 Online:2017-04-05 Published:2017-03-01
  • Contact: Tang Caiguo,Yang Sanwei;
  • About author:# Co-first authors


The control of flowering time is a crucial environmental adaptation in plants; numerous CCT domain genes control flowering in plants. Bioinformatics was used for a genome-wide research of CCT domain genes in Aegilops tauschii. In this study, 26 CCT domain genes were identified in A. tauschii, distributed on seven chromosomes of the A. tauschii genome. The predicted molecular weight of this family was spread over 14.9 to 83.2 kDa, and 25 proteins contain a complete CCT conserved structure domain. Twelve pairs of A. tauschii-Triticum urartu and 9 pairs of A. tauschii-rice CCT proteins were orthologous in the phylogenetic tree. Specific expression and constitutive expression were found in the CCT gene family; nine AetCCT genes were constitutively expressed in all organisms, including AetCCT3, AetCCT4, AetCCT7 and AetCCT9; AetCCT15, AetCCT21 and AetCCT25 were specifically expressed in leaf, seed and roots of A. tauschii, respectively. Moreover, the members responded to phytohormone treatments differently, which suggested a complex function and characteristic in metabolism of this family. Light conditions affect the expression of AetCCT, and this gene family is regulated by photoperiod and vernalization. The results of this paper not only provide useful information for wheat evolution studies, but also provide theory basis for comprehensive understanding of formation and interaction characteristics of important traits.

Key words: Aegilops tauschii, CCT gene family, sequence analysis, responses to phytohormones

Figure 1

Chromosome mapping and QTL distribution of CCT genes in Aegilops tauschii genomeGenetic scale is indicated on the left side of chromosomes, the heading date QTLs are indicated on the right side of the chromosomes in black."

Figure 2

Intron-exon structures of CCT genes in Aegilops tauschiiExons are represented by bars, introns are represented by connecting lines."

Figure 3

Motif distribution of AetCCT proteins in Aegilops tauschii"

Figure 4

Motifs of CCT proteins in Aegilops tauschii"

Figure 5

Phylogenesis of CCT proteinsCCT proteins of Triticum urartu and Aegilops tauschii were indicated by triangles and circles, respectively."

Figure 6

Cis-elements in CCT genes promoters in response to phytohormones of Aegilops tauschii"

Table 1

CCT gene family in Aegilops tauschii"

Gene Length (bp) CDS Scaffold Location Mapped seq. Chromosome
AetCCT1 2211 AEGTA18365 Scaffold4528 49937-52147 AT1D0317 1DL
AetCCT2 1836 AEGTA21580 Scaffold71509 42038-43873 AT1D0523 1DL
AetCCT3 1333 AEGTA27323 Scaffold97182 45576-47039 AT1D0969 1DL
AetCCT4 3096 AEGTA10532 Scaffold38896 10923-14018 AT2D1124 2DS
AetCCT5 2241 AEGTA13911 Scaffold30755 94901-97141 AT2D1581 2DS
AetCCT6 2157 AEGTA00203 Scaffold30755 129179-131557 AT2D1581 2DS
AetCCT7 2226 AEGTA31460 Scaffold77907 6990-9215 AT3D2607 3DS
AetCCT8 1134 AEGTA06337 Scaffold4745 59908-61041 AT3D3130 3DL
AetCCT9 2692 AEGTA28548 Scaffold28581 76532-79223 AT4D3632 4DS
AetCCT10 606 AEGTA01709 Scaffold50727 43106-43711 AT4D3683 4DS
AetCCT11 3208 AEGTA21446 Scaffold108 140572-143968 AT4D3728 4DL
AetCCT12 4521 AEGTA31746 Scaffold2864 19243-23723 AT4D3886 4DL
AetCCT13 2234 AEGTA18304 Scaffold98624 23875-26108 BE403305 4DL
AetCCT14 2878 AEGTA13770 Scaffold12030 253420-256287 AT4D4194 4DL
AetCCT15 603 AEGTA33063 Scaffold24714 5731-6333 AT5D4519 5DL
AetCCT16 1059 AEGTA03508 Scaffold185863 19051-20109 AT5D4590 5DL
AetCCT17 2404 AEGTA04421 Scaffold53469 30253-32656 AT5D5030 5DL
AetCCT18 738 AEGTA32221 Scaffold7166 12609-13346 AT5D5201 5DL
AetCCT19 3597 AEGTA05461 Scaffold106936 10967-14734 AT6D5284 6DS
AetCCT20 1188 AEGTA21198 Scaffold137524 2620-3965 AT6D5798 6DL
AetCCT21 2031 AEGTA15475 Scaffold71269 16605-18635 AT7D6397 7DS
AetCCT22 2781 AEGTA31079 Scaffold66553 48279-51059 AT7D6416 7DS
AetCCT23 3075 AEGTA08066 Scaffold6305 52570-55644 AT7D6716 7DS
AetCCT24 1521 AEGTA13638 Scaffold7100 34283-35803 AT7D7002 7DL
AetCCT25 742 AEGTA03492 Scaffold116052 16157-16929 AT7D7027 7DL
AetCCT26 2036 AEGTA22574 Scaffold16211 9228-11710 AT7D7167 7DL

Figure 7

Expression profile of CCT genes in different tissues and developmental stages of Aegilops tauschii"

Figure 8

Hierarchical clustering of CCT domain genes under different phytohormones treatments in Aegilops tauschii(A) Phytohormones treatment for 24 h; (B) Phytohormones treatment for 72 h"

Figure 9

Expression of CCT domain genes under different light treatments in Aegilops tauschiiNV-LD: Long-day condition without vernalization (16 h light/8 h dark); NV-SD: Short-day condition without vernalization (8 h light/16 h dark); LD: Long-day condition after vernalization (16 h light/8 h dark); SD: Short-day condition after vernalization (8 h light/16 h dark)."

[1] 陈华夏, 申国境, 王磊, 邢永忠 (2010). 4个物种CCT结构域基因家族的序列进化分析. 华中农业大学学报 29, 669-676.
[2] Ando E, Ohnishi M, Wang Y, Matsushita T, Watanabe A, Hayashi Y, Fujii M, Ma JF, Inoue S, Kinoshita T (2013). TWIN SISTER OF FT,GIGANTEA, and CONSTANS ha- ve a positive but indirect effect on blue light-induced stom- atal opening in Arabidopsis. Plant Physiol 162, 1529-1538.
[3] Cho LH, Choi H, An G (2010). OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB.Plant J 63, 8-30.
[4] Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W (2007). Control of flowering time in temperate cereals: genes, domestication and sustainable productivity.J Exp Bot 58, 1231-1244.
[5] Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Bailey PC, Sullivan DM (2012). Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae.PLoS One 7, e45307.
[6] Dennis ES, Peacock WJ (2009). Vernalization in cereals.J Biol 8, 57.
[7] Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controlsFT-like gene expression indepen- dently of Hd1. Genes Dev 18, 926-936.
[8] Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma- Bognár L, Nagy F, Millar AJ, Amasino RM (2002). TheELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana.Nature 419, 74-77.
[9] Gao H, Zheng XM, Fei GL, Chen J, Jin MN, Ren YL, Wu WX, Zhou KN, Sheng PK, Zhou F, Jiang L, Wang J, Zhang X, Guo XP, Wang JL, Cheng ZJ, Wu CY, Wang HY, Wan JM (2013). Ehd4 encodes a novel andOryza- genus-specific regulator of photoperiodic flowering in rice. PLoS Genet 9, e1003281.
[10] Grasser KD (2005). Emerging role for transcript elongation in plant development.Trends Plant Sci 10, 484-490.
[11] Harmon F, Imaizumi T, Gray WM (2008). CUL1 regulates TOC1 protein stability in the Arabidopsis circadian clock.Plant J 55, 568-579.
[12] Hicks KA, Albertson TM, Wagner DR (2001). EARLY FLO- WERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis.Plant Cell 13, 1281-1292.
[13] Hsu CY, Adams JP, No K, Liang H, Meilan R, Pechanova O, Barakat A, Carlson JE, Page GP, Yuceer C (2012). Overexpression ofCONSTANS homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar. PLoS One 7, e45448.
[14] Kim J, Kim Y, Yeom M, Kim JH, Nam HG (2008). FIONA1 is essential for regulating period length in the Arabidopsis circadian clock. Plant Cell 20, 307-319.
[15] Kim SK, Park HY, Jang YH, Lee JH, Kim JK (2013). The sequence variation responsible for the functional difference between the CONSTANS protein, and the CONSTANS-like COL1 and COL2 proteins, resides mostly in the region encoded by their first exons. Plant Sci 199-200, 71-78.
[16] Lee YS, Jeong DH, Lee DY, Yi J, Ryu CH, Kim SL, Jeong HJ, Choi SC, Jin P, Yang J, Rademacher EH, Moller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D (2011). A cellular expression map of the ArabidopsisAUXIN RESPONSE FACTOR gene family. Plant J 68, 597-606.
[17] Lolas IB, Himanen K, Gronlund JT, Lynggaard C, Houben A, Melzer M, Van Lijsebettens M, Grasser KD (2010). The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2.Plant J 61, 686-697.
[18] Panda S, Poirier GG, Kay SA (2002). Tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the Arabidopsis circadian oscillator.Dev Cell 3, 51-61.
[19] Putterill J, Robson F, Lee K, Simon R, Coupland G (1995). TheCONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857.
[20] Riboni M, Galbiati M, Tonelli C, Conti L (2013). GIGANTEA enables drought escape response via abscisic acid- dependent activation of the florigens andSUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162, 1706-1719.
[21] Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Strader LC, Chen GL, Bartel B (2010). Ethylene directs auxin to control root cell expansion.Plant J 64, 874-884.
[22] Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA, Kay SA (2000). Cloning of the Arabidopsis clock geneTOC1, an autoregulatory response regulator homolog. Science 289, 768-771.
[23] Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007). The molecular basis of vernalization-induced flo- wering in cereals.Trends Plant Sci 12, 352-357.
[24] Vanneste S, Friml J (2009). Auxin: a trigger for change in plant development.Cell 136, 1005-1016.
[25] Wu F, Price B, Haider W, Seufferheld G, Nelson R, Hanzawa Y (2014). Functional and evolutionary characterization of theCONSTANS gene family in short-day photoperiodic flowering in soybean. PLoS One 9, e85754.
[26] Wu WX, Zheng XM, Lu GW, Zhong ZZ, Gao H, Chen LP, Wu CY, Wang HJ, Wang Q, Zhou KN, Wang JL, Wu FQ, Zhang X, Guo XP, Cheng ZJ, Lei CL, Lin QB, Jiang L, Wang HY, Ge S, Wan JM (2013). Association of functional nucleotide polymorphisms atDTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA 110, 2775-2780.
[27] Xiao J, Xu S, Li C, Xu Y, Xing L, Niu Y, Huan Q, Tang Y, Zhao C, Wagner D, Gao C, Chong K (2014). O-GlcNAc- mediated interaction between ?VER2 and ?TaGRP2 elicits ?TaVRN1 mRNA accumulation during vernalization in win- ter wheat. Nat Commun 5, 4572-4578.
[28] Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF (2008). Natural variation inGhd7 is an important regulator of hea- ding date and yield potential in rice. Nat Genet 40, 761-767.
[29] Yan L, Fu DL, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006). The wheat and barley vernalization geneVRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103, 19581-19586.
[30] Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakri- shna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004). The wheatVRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640-1644.
[31] Yang Q, Li Z, Li WQ, Ku LX, Wang C, Ye JR, Li K, Yang N, Li YP, Zhong T, Li JS, Chen YH, Yan JB, Yang XH, Xu ML (2013). CACTA-like transposable element inZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci USA 110, 16969-16974.
[32] Yano M, Inoue H, Tanisaka T (2012). Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor geneGhd7 under both short- and long-day conditions. Plant Cell Physiol 53, 717-728.
[33] Zhang L, Li QP, Dong HJ, He Q, Liang LW, Tan C, Han ZM, Yao W, Li GW, Zhao H, Xie WB, Xin YZ (2015). Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice. Sci Rep 5, 7663.
[34] Zheng J, Liu H, Wang YQ, Wang LF, Chang XP, Jing RL, Hao CY, Zhang XY (2014). TaTEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L). J Exp Bot 65, 5351-5365.
[1] Shaoshuai Yu, Caili Lin, Shengjie Wang, Wenxin Zhang, Guozhong Tian. Structures of the tuf gene and its upstream part genes and characteristic analysis of conserved regions and activity from related gene promoters of a phytoplasma [J]. Biodiv Sci, 2018, 26(7): 738-748.
[2] Shaoshuai Yu,Qicong Xu,Caili Lin,Shengjie Wang,Guozhong Tian. Genetic diversity of phytoplasmas: research status and prospects [J]. Biodiv Sci, 2016, 24(2): 205-215.
[3] Li-Long WANG, Liang WANG, Li-Fang ZHANG, Yu-Yang LIU, Shi-Jian XU. Structure and dynamic characteristics of Gymnocarpos przewalskii in different habitats [J]. Chin J Plant Ecol, 2015, 39(10): 980-989.
[4] Xi Zhang, Xiaogai Hou, Dalong Guo, Chengwei Song, Yabin Duan. iPBS-PCR Used for Cloning and Analysis of Long Terminal Repeat Transposons in Tree Peony (Paeonia) [J]. Chin Bull Bot, 2014, 49(3): 322-330.
[5] Gen Zhang, Yilong Xi, Yinghao Xue, Xin Hu, Xianling Xiang, Xinli Wen. Effects of coal ash pollution on the genetic diversity of Brachionus calyciflorus based on rDNA ITS sequences [J]. Biodiv Sci, 2010, 18(3): 241-250.
[6] Ge Yao;Shulian Xie. Progress in Molecular Systematics of Batrachospermales [J]. Chin Bull Bot, 2007, 24(02): 141-146.
[7] LI Chun-Xiang YANG Qun. Direct Sequencing of PCR Products or Sequencing by Cloning PCR Products—Method of Determining Internal Transcribed Spacer Sequences of Nuclear Ribosomal DNA inAthrotaxis [J]. Chin Bull Bot, 2002, 19(06): 698-704.
Full text



[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 44 .
[2] Wei Xie Chaoyin Yue Zhenghong Guo Zhipeng Dai Min Liu Wei Yao. Transient Expression of GUS Gene Controlled by Different Regulator Sequences of Tobacco[J]. Chin Bull Bot, 2007, 24(04): 452 -458 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 72 .
[4] . [J]. Chin Bull Bot, 1999, 16(05): 621 -624 .
[5] Tao Wang, Xurong Mei, Xiuli Zhong, Yuzhong Li, Zhengbing Zeng, Haiyan Wang, Lei Sun, Xu Xia. Phospholipase Dδ Mediates the Process of Cold Acclimation in Arabidopsis thaliana[J]. Chin Bull Bot, 2010, 45(05): 541 -547 .
[6] Tao Yao, Sulan Bai, Miaomiao Li, Yaochuan Zhang, Yikun He. DELLA Contribute to Tolerance to Nitric Oxide Stress in Arabidopsis Seedlings[J]. Chin Bull Bot, 2011, 46(5): 481 -488 .
[7] Liu Yan-ju;Li Cheng-sen and Wang Yu-fei. Review on Genus Metasequoia[J]. Chin Bull Bot, 1996, 13(03): 15 -22 .
[8] Jiang Gaoming, Han Xingguo, Lin Guanghui. Response of Plant Growth to Elevated CO2: A Review on the Chief Methods and Basic Conclusions Based on Experiments in the External Countries in Past Decade[J]. Chin J Plan Ecolo, 1997, 21(6): 489 -502 .
[10] Li Jun-qing, Gong Wei-guang. Characteristic Analysis of Nutrient Contents of Major Tree Species in Northeast China[J]. Chin J Plan Ecolo, 1991, 15(4): 380 -385 .