植物学报 ›› 2020, Vol. 55 ›› Issue (1): 76-82.doi: 10.11983/CBB19208

• 特邀专家方法 • 上一篇    下一篇

植物蛋白磷酸化的检测方法

朱丹,曹汉威,李媛,任东涛()   

  1. 中国农业大学生物学院, 植物生理学与生物化学国家重点实验室, 北京 100193
  • 收稿日期:2019-10-24 接受日期:2019-12-31 出版日期:2020-01-01 发布日期:2020-01-03
  • 通讯作者: 任东涛 E-mail:ren@cau.edu.cn
  • 基金资助:
    国家自然科学基金(No.31670248);国家自然科学基金(No.31970276)

Protocols for Analyzing Plant Phospho-proteins

Zhu Dan,Cao Hanwei,Li Yuan,Ren Dongtao()   

  1. State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
  • Received:2019-10-24 Accepted:2019-12-31 Online:2020-01-01 Published:2020-01-03
  • Contact: Ren Dongtao E-mail:ren@cau.edu.cn

摘要:

蛋白磷酸化是一种重要的蛋白质翻译后修饰方式, 几乎参与植物所有生命过程的调节。蛋白磷酸化过程主要指在蛋白激酶的催化作用下, 将三磷酸腺苷(ATP)上的γ位磷酸基团转移到底物蛋白特定氨基酸残基上的过程。底物蛋白上被磷酸化的常见氨基酸有丝氨酸、苏氨酸及酪氨酸, 磷酸基团与氨基酸中的羟基通过酯键连接。该文详细描述了几种常用的蛋白质体外及体内磷酸化的检测方法及注意事项。

关键词: 蛋白磷酸化, 蛋白激酶, 植物

Abstract:

Protein phosphorylation is one of the important protein posttranslational modifications that is involved in the regulation of most cellular processes in plants. Protein kinases catalyze the phosphorylation by transferring the phosphate group in ATP to the substrate proteins. The phosphate is usually covalently linked to the hydroxyl group of specific amino acid residues in the substrates by an ester bond. The mostly studied phosphorylation sites are serine, threonine, and tyrosine residues. Here, we present protocols and related tips for the in vitro and in vivo protein phosphorylation assays.

Key words: protein phosphorylation, protein kinase, plant

图1

原核表达的拟南芥激酶MPK6对3个推测底物的体外磷酸分析 激酶(MPK6)连接有6×His标签、推测的底物蛋白(A、B和C)连接有Flag标签。体外磷酸化反应完成后, 反应体系中的蛋白用SDS-PAGE gel分离。然后进行磷酸化底物的放射自显影分析(上图)。底物蛋白(中图)和激酶(下图)的免疫印迹分析显示底物、激酶各自在磷酸化反应中的蛋白使用量基本一致。"

图2

Phos-tag gel和SDS-PAGE gel电泳后, 免疫印迹检测磷酸化蛋白的对比分析 磷酸酶(如Calf intestine alkaline phosphatase, CIAP)可去除磷酸化蛋白上的磷酸基团。同一样品在CIAP处理前(-)、后(+), 磷酸化和非磷酸化形式的蛋白经Phos-tag gel (上图)和SDS- PAGE gel (下图)电泳后的免疫印迹分析结果。经Phos-tag gel电泳, 未加CIAP的样品中特定蛋白的磷酸化(P-form)和非磷酸化形式(None-P-form)被清晰地分开(上图); 加CIAP后磷酸化形式消失而非磷酸化形式条带增强。经SDS-PAGE gel电泳, 未加和加CIAP处理的样品中, 特定蛋白的磷酸化和非磷酸化形式分开不明显(下图)。"

图3

拟南芥幼苗总蛋白双向凝胶电泳后的磷酸化蛋白Pro-Q Diamond染色检测分析 2周龄拟南芥幼苗总蛋白提取液经双向凝胶电泳分离后, 用Pro-Q Diamond试剂对磷酸化蛋白进行染色(左图)。荧光扫描后的凝胶再进行考马斯亮蓝染色(blue-silver staining) (右图)。"

[1] Agrawal GK, Thelen JJ (2005). Development of a simplified, economical polyacrylamide gel staining protocol for phosphoproteins. Proteomics 5, 4684-4688.
[2] Agrawal GK, Thelen JJ (2006). Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics 5, 2044-2059.
[3] Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004). Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633-1649.
[4] Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004). Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25, 1327-1333.
[5] Chao Q, Liu XY, Mei YC, Gao ZF, Chen YB, Qian CR, Hao YB, Wang BC (2014). Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity. Plant Mol Biol 85, 95-105.
[6] Chen MJ, Dixon JE, Manning G (2017). Genomics and evolution of protein phosphatases. Sci Signal 10, eaag1796.
[7] de la Fuente van Bentem S, Hirt H (2007). Using phosphoproteomics to reveal signaling dynamics in plants. Trends Plant Sci 12, 404-411.
[8] Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20, 301-305.
[9] Fischer EH, Krebs EG (1955). Conversion of phosphorylase B to phosphorylase A in muscle extracts. J Biol Chem 216, 121-132.
[10] Frost DC, Li LJ (2014). Recent advances in mass spectrometry-based glycoproteomics. Adv Protein Chem Struct Biol 95, 71-123.
[11] Hubbard MJ, Cohen P (1993). On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18, 172-177.
[12] Ke YQ, Han GQ, He HQ, Li JX (2009). Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun 379, 133-138.
[13] Khan M, Takasaki H, Komatsu S (2005). Comprehensive phosphoproteome analysis in rice and identification of phosphoproteins responsive to different hormones/stresses. J Proteome Res 4, 1592-1599.
[14] Kim HS, Fernandes G, Lee CW (2016). Protein phosphatases involved in regulating mitosis: facts and hypotheses. Mol Cell 39, 654-662.
[15] Kinoshita E, Kinoshita-Kikuta E, Koike T (2007). Specific recognition and detection of phosphorylated proteins using characteristics of metal ion. Yakugaku Zasshi 127, 1897-1913.
[16] Kosako H, Nagano K (2011). Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics 8, 81-94.
[17] Krupa A, Preethi G, Srinivasan N (2004). Structural modes of stabilization of permissive phosphorylation sites in protein kinases: distinct strategies in Ser/Thr and Tyr kinases. J Mol Biol 339, 1025-1039.
[18] Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
[19] Laugesen S, Bergoin A, Rossignol M (2004). Deciphering the plant phosphoproteome: tools and strategies for a challenging task. Plant Physiol Biochem 42, 929-936.
[20] Peck SC (2003). Early phosphorylation events in biotic stress. Curr Opin Plant Biol 6, 334-338.
[21] Prak S, Hem S, Boudet J, Viennois G, Sommerer N, Rossignol M, Maurel C, Santoni V (2008). Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP2;1 in response to salt stress. Mol Cell Proteomics 7, 1019-1030.
[22] Wang PC, Zhao Y, Li ZP, Hsu CC, Liu X, Fu LW, Hou YJ, Du YY, Xie SJ, Zhang CG, Gao JH, Cao MJ, Huang XS, Zhu YF, Tang K, Wang XG, Tao WA, Xiong Y, Zhu JK (2018). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69, 100-112.
[23] Whiteman SA, Nühse TS, Ashford DA, Sanders D, Maathuis FJ (2008). A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. Plant J 56, 146-156.
[24] Wu CF, Wang RN, Liang QJ, Liang JJ, Li WK, Jung SY, Qin J, Lin SH, Kuang J (2010). Dissecting the M phase- specific phosphorylation of serine-proline or threonine- proline motifs. Mol Biol Cell 21, 1470-1481.
[25] Yang C, Wang ZG, Zhu PF (2004). Recent advances of protein phosphorylation in proteome. Prog Physiol Sci 35, 119-124.
[26] Yin XJ, Wang X, Komatsu S (2018). Phosphoproteomics: protein phosphorylation in regulation of seed germination and plant growth. Curr Protein Pept Sci 19, 401-412.
[27] Zhang X, Cui YN, Yu M, Su BD, Gong W, Baluška F, Komis G, Samaj J, Shan XY, Lin JX (2019). Phosphorylation-mediated dynamics of nitrate transceptor NRT1.1 regulate auxin flux and nitrate signaling in lateral root growth. Plant Physiol 181, 480-498.
[28] Zhu WG (2017). Regulation of p53 acetylation. Sci China Life Sci 60, 321-323.
[1] 崔亚宁 钱虹萍 赵艳霞 李晓娟. 植物模式识别受体的胞内转运及其在植物免疫中的作用[J]. 植物学报, 2020, 55(3): 0-0.
[2] 徐佳慧 代宇佳 罗晓峰 舒凯 谭伟明. 植物激素研究中的化学生物学思路与应用[J]. 植物学报, 2020, 55(3): 0-0.
[3] 肖燕 王振兴 李东明 齐艳华 恩和巴雅尔. 羊草成熟胚诱导愈伤组织及植株再生系统的优化[J]. 植物学报, 2020, 55(2): 0-0.
[4] 王劲东 周豫 余佳雯 范晓磊 张昌泉 李钱峰 刘巧泉. miR172-AP2模块调控植物生长发育的研究进展[J]. 植物学报, 2020, 55(2): 0-0.
[5] 王梦龙,彭小群,陈竹锋,唐晓艳. 植物凝集素类受体蛋白激酶研究进展[J]. 植物学报, 2020, 55(1): 96-105.
[6] 徐重益. 植物中验证蛋白相互作用的Pull-down和Co-IP技术[J]. 植物学报, 2020, 55(1): 62-68.
[7] 胡伟娟, 傅向东, 陈凡, 杨维才. 新一代植物表型组学的发展之路[J]. 植物学报, 2019, 54(5): 558-568.
[8] 李伟滔, 贺闽, 陈学伟. ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器[J]. 植物学报, 2019, 54(5): 547-549.
[9] 郭倩倩, 周文彬. 植物响应联合胁迫机制的研究进展[J]. 植物学报, 2019, 54(5): 662-673.
[10] 张洵, 喻娟娟, 王思竹, 李莹, 戴绍军. 植物DREPP基因家族研究进展[J]. 植物学报, 2019, 54(5): 582-595.
[11] 徐悦, 曹英萍, 王玉, 付春祥, 戴绍军. 发根农杆菌介导的菠菜毛状根遗传转化体系的建立[J]. 植物学报, 2019, 54(4): 515-521.
[12] 陈立超, 詹妮, 李彦莎, 冯健, 左建儒. 植物蛋白质S-亚硝基化修饰的检测与分析[J]. 植物学报, 2019, 54(4): 497-502.
[13] 郭佳, 李衍素, 贺超兴, 闫妍, 于贤昌. 南瓜高效再生体系的建立[J]. 植物学报, 2019, 54(4): 539-546.
[14] 范业赓, 丘立杭, 黄杏, 周慧文, 甘崇琨, 李杨瑞, 杨荣仲, 吴建明, 陈荣发. 甘蔗节间伸长过程赤霉素生物合成关键基因的表达及相关植物激素动态变化[J]. 植物学报, 2019, 54(4): 486-496.
[15] 苏钺凯,邱镜仁,张晗,宋振巧,王建华. CRISPR/Cas9系统在植物基因组编辑中技术改进与创新的研究进展[J]. 植物学报, 2019, 54(3): 385-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕忠恕. 生长调节物质与植物水分状况的关系[J]. 植物学报, 1985, 3(04): 1 -6 .
[2] 黎大爵 韩孕周 王利平. 红花种质资源的研究IV、种子休眠特性的种质筛选[J]. 植物学报, 1990, 7(02): 50 -52 .
[3] 吴尚 吴弘 吴元. 深切怀念亲爱的三姑[J]. 植物学报, 1999, 16(增刊): 45 -46 .
[4] 杨弘远. 荧光显微镜技术的基本原理与方法[J]. 植物学报, 1984, 2(06): 45 -48 .
[5] 刘家尧 骆爱玲 梁峥. TD-PAGE中若干技术的改进[J]. 植物学报, 1998, 15(03): 69 -72 .
[6] 李凌浩 陈佐忠. 草地生态系统碳循环及其对全球变化的响应I 碳循环的分室模型、碳输入与贮量[J]. 植物学报, 1998, 15(02): 14 -22 .
[7] 许欢欢, 康健, 梁明祥. 植物果聚糖的代谢途径及其在植物抗逆中的功能研究进展[J]. 植物学报, 2014, 49(2): 209 -220 .
[8] 《植物学报》编辑部. 从《通报》到《学报》[J]. 植物学报, 2013, 48(1): 4 -5 .
[9] 杨继华 薛妙男 隆景峰. 沙田柚自交、异交花柱蛋白质的比较分析[J]. 植物学报, 1996, 13(专辑): 45 .
[10] 舒群芳 赵路 李文彬 张利明 孙勇如. 植物蛋白电泳分析的方法学研究及技术改进[J]. 植物学报, 1998, 15(06): 73 -78 .