植物学报 ›› 2019, Vol. 54 ›› Issue (4): 441-454.doi: 10.11983/CBB18191

• 研究论文 • 上一篇    下一篇

木犀科植物叶绿体基因组结构特征和系统发育关系

赵月梅1,杨振艳2,赵永平1,李筱玲1,赵志新1,赵桂仿3,*()   

  1. 1 商洛学院生物医药与食品工程学院, 商洛 726000
    2 中国科学院昆明植物研究所, 东亚植物多样性与生物地理学重点实验室, 昆明 650201
    3 西北大学生命科学学院, 西部资源生物与现代生物技术教育部重点实验室, 西安 710069
  • 收稿日期:2018-09-06 接受日期:2019-04-23 出版日期:2019-07-01 发布日期:2020-01-08
  • 通讯作者: 赵桂仿 E-mail:gfzhao@nwu.edu.cn
  • 基金资助:
    商洛市博士科技创新团队(SK2017-45);商洛学院高层次人才引进项目(17SKY029)

Chloroplast Genome Structural Characteristics and Phylogenetic Relationships of Oleaceae

Zhao Yuemei1,Yang Zhenyan2,Zhao Yongping1,Li Xiaoling1,Zhao Zhixin1,Zhao Guifang3,*()   

  1. 1 College of Biopharmaceutical and Food Engineering, Shangluo University, Shangluo 726000, China
    2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
    3 Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
  • Received:2018-09-06 Accepted:2019-04-23 Online:2019-07-01 Published:2020-01-08
  • Contact: Zhao Guifang E-mail:gfzhao@nwu.edu.cn

摘要:

木犀科11属19个种叶绿体基因组的一般特征和变异特征的比较分析显示, 结果表明, 该科叶绿体基因组大小为154-165 kb, 其差异主要是大单拷贝(LSC)长度的差异所致。Jasminum属3个物种的叶绿体基因组长度与其余物种有较大差异, 该属clpP基因内含子和accD基因丢失。共线性分析表明, Jasminum属3个物种多个基因出现基因重排现象, 倒位可能是重排的主要原因。Jasminum属在IRb/SSC和SSC/IRa边界的基因均与其它物种不同; 重复序列与SSR数量检测结果表明, Jasminum属与其余物种在数量及重复长度上差异较大。基于CDS数据构建的系统发育树表明, Abeliophyllum distichumForsythia suspensa为木犀科中较早分化的类群。

关键词: 木犀科, 叶绿体基因组, 结构特征, 系统发育

Abstract:

In this study, the chloroplast genomes from 19 species (11 genera) in Oleaceae were compared to reveal the general characteristics and structural variations. The chloroplast genome sizes in Oleaceae were 154-165 kb, and the differences were mainly caused by the length of large single-copy regions. The chloroplast genome sizes of 3 species from the genus Jasminum differed greatly from that for other species; in addition, the introns from the clpP and accD genes were lost in Jasminum. Synteny analyses showed several gene rearrangements in 3 Jasminum species that were probably caused by inversions. The boundary genes between IRb/small single copy (SSC) and SSC/IRa regions in 3 Jasminum species differed from others. Repeat sequences and simple sequence repeat detection demonstrated that Jasminum had significant differences in repeat number and repeat length as compared with other genera. On the basis of shared protein-coding genes among 19 species, Abeliophyllum distichum and Forsythia suspensa were the early-diverging clades in Oleaceae.

Key words: Oleaceae, chloroplast genomes, structural characteristics, phylogeny

Table 1

List of 19 species in Oleaceae, GenBank accession number and structural features of chloroplast genomes"

表2

叶绿体基因组中含内含子蛋白编码基因的编码区长度和基因全长"

Species petD rps12 clpP rpoC1 rps16
1 483/1196 372/908 591/2047 2064/2821 267/1132
2 483/1218 372/908 591/2043 2073/2834 267/1147
3 483/1230 375/911 591/2045 2052/2820 267/1134
4 483/1261 381/917 591/2043 2073/2827 267/1153
5 483/1134 372/908 591/2045 2052/2811 255/1147
6 483/1148 372/908 591/2053 2073/2830 267/1136
7 483/1217 372/908 591/2039 2073/2834 267/1142
8 483/1196 372/908 588/2045 2064/2822 267/1131
9 483/1196 381/917 660 2076/2844 267/1162
10 483/1203 387/923 786 2052/2808 267/1154
11 483/1213 387/923 786 2052/2807 267/1161
12 483/1215 381/917 591/2041 2073/2833 267/1143
13 483/1217 372/908 591/2043 2073/2830 267/1143
14 483/1215 372/908 591/2046 2073/2832 267/1141
15 483/1213 371/907 591/2043 2073/2831 267/1142
16 483/1213 372/908 591/2044 2073/2831 267/1142
17 483/1215 373/909 591/2041 2073/2833 267/1141
18 483/1203 372/908 591/2047 2073/2834 267/1147
19 483/1199 372/913 591/2041 2073/2784 237/1115

图1

19种木犀科植物叶绿体基因组中重复序列类型和比例 (A) 3种重复类型的数目; (B) 3种重复类型的比例; (C) SSR类型的比例; (D) SSR的数目和类型"

图2

木犀科19个物种的叶绿体基因组的四部分边界比较"

图3

木犀科19个物种叶绿体基因组的比对分析 物种编号1-19同表1。以Abeliophyllum distichum叶绿体基因组序列为参考序列(x轴), 各物种叶绿体基因组与参考序列一致度范围为50%-100%(y轴)。箭头表示基因及转录方向。"

图4

木犀科19种植物的叶绿体基因组共线性分析 物种编号1-19同表1。"

图5

基于木犀科19个物种共有蛋白编码基因构建的系统发育树 每个节点附近的数字分别表示ML树的自展支持率和BI树的后验概率。以Cornus controversa、Echites umbellatus和Catharanthus roseus为外类群。ML: 最大似然法; BI: 贝叶斯法"

[1] 李巧丽, 延娜, 宋琼, 郭军战 ( 2018). 鲁桑叶绿体基因组序列及特征分析. 植物学报 53, 94-103.
[2] 唐萍, 阮秋燕, 彭程 ( 2011). 禾本科植物叶绿体基因组结构的系统进化研究. 中国农学通报 27(30), 17.
[3] Baali-Cherif D, Besnard G ( 2005). High genetic diversity and clonal growth in relict populations of Olea europaea subsp. laperrinei ( Oleaceae) from Hoggar, Algeria. Ann Bot 96, 823-830.
[4] Benson G ( 1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573-580.
[5] Besnard G, de Casas RR, Christin PA, Vargas P ( 2009). Phylogenetics of Olea( Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann Bot 104, 143-160.
[6] Besnard G, Hernández P, Khadari B, Dorado G, Savolainen V ( 2011). Genomic profiling of plastid DNA variation in the mediterranean olive tree. BMC Plant Biol 11, 80.
[7] Besnard G, Khadari B, Baradat P, Bervillé A ( 2002). Olea europaea( Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theor Appl Genet 104, 1353-1361.
[8] Blazier JC, Ruhlman TA, Weng ML, Rehman SK, Sabir JSM, Jansen RK ( 2016). Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement. Sci Rep 6, 24595.
[9] Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK ( 2006). The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23, 2175-2190.
[10] Darling ACE, Mau B, Blattner FR, Perna ANT ( 2004). Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14, 1394-1403.
[11] Dong WP, Xu C, Cheng T, Lin K, Zhou SL ( 2013). Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of Saxifragales. Genome Biol Evol 5, 989-997.
[12] Flora of China Editorial Committee ( 1995). Flora of China, Vol. 16. Beijing & St. Louis: Science Press & Missouri Botanical Garden Press. pp. 143-188.
[13] Flora of China Editorial Committee ( 1996). Flora of China, Vol. 15. Beijing & St. Louis: Science Press & Missouri Botanical Garden Press. pp. 272-319.
[14] Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I ( 2004). Vista: computational tools for comparative genomics. Nucleic Acids Res 32, W273-W279.
[15] Gao L, Su YJ, Wang T ( 2010). Plastid genome sequencing, comparative genomics, and phylogenomics: current status and prospects. J Syst Evol 48, 77-93.
[16] Gray BN, Ahner BA, Hanson MR ( 2009). Extensive homologous recombination between introduced and native regulatory plastid DNA elements in transplastomic plants. Transgenic Res 18, 559-572.
[17] Greiner S, Wang X, Rauwolf U, Silber MV, Mayer K, Meurer J, Haberer G, Herrmann RG ( 2008). The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera. I. Sequence evaluation and plastome evolution. Nucleic Acids Res 36, 2366-2378.
[18] Guisinger MM, Kuehl JV, Boore JL, Jansen RK ( 2011). Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 28, 583-600.
[19] Hansen DR, Dastidar SG, Cai ZQ, Penaflor C, Kuehl JV, Boore JL, Jansen RK ( 2007). Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus( Buxaceae), Chloranthus 45, 547-563.
[20] He YX, Liu LX, Yang SH, Dong MF, Yuan WJ, Shang FD ( 2017). Characterization of the complete chloroplast genome of chinese fringetree (Chionanthus retusus). Conserv Genet Resour 9, 431-434.
[21] Hirao T, Watanabe A, Kurita M, Kondo T, Takata K ( 2008). Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol 8, 70.
[22] Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M ( 1989). The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217, 185-194.
[23] Hu YC, Zhang Q, Rao GY , Sodmergen ( 2008). Occurrence of plastids in the sperm cells of Caprifoliaceae: biparental plastid inheritance in angiosperms is unilaterally derived from maternal inheritance. Plant Cell Physiol 49, 958-968.
[24] Huang H, Shi C, Liu Y, Mao SY, Gao LZ ( 2014). Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol 14, 151.
[25] Jeandroz S, Roy A, Bousquet J ( 1997). Phylogeny and phylogeography of the circumpolar genus Fraxinus( Oleaceae) based on internal transcribed spacer sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 7, 241-251.
[26] Katayama H, Ogihara Y ( 1996). Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA. Curr Genet 29, 572-581.
[27] Khakhlova O, Bock R ( 2006). Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46, 85-94.
[28] Kim C, Kim HJ, Do HDK, Jung J, Kim JH ( 2018). Characterization of the complete chloroplast genome of Fraxinus chiisanensis( Oleaceae), an endemic to Korea. Conserv Genet Resour 11, 63-66.
[29] Kim HW, Lee HL, Lee DK, Kim KJ ( 2016). Complete plastid genome sequences of Abeliophyllum distichum Nakai (Oleaceae), a Korea endemic genus. Mitochondr DNA Part B 1, 596-598.
[30] Knox EB, Downie SR, Palmer JD ( 1993). Chloroplast genome rearrangements and the evolution of giant lobelias from herbaceous ancestors. Mol Biol Evol 10, 414-430.
[31] Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R ( 2001). Reputer: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29, 4633-4642.
[32] Lee HL, Jansen RK, Chumley TW, Kim KJ ( 2007). Gene relocations within chloroplast genomes of Jasminum and Menodora( Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24, 1161-1180.
[33] Li JH, Alexander JH, Zhang DL ( 2002). Paraphyletic Syringa( Oleaceae): evidence from sequences of nuclear ribosomal DNA ITS and ETS regions. Syst Bot 27, 592-597.
[34] Maier RM, Neckermann K, Igloi GL, Kösel H ( 1995). Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251, 614-628.
[35] Ogihara Y, Terachi T, Sasakuma T ( 1988). Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci USA 85, 8573-8577.
[36] Palmer JD ( 1985). Comparative organization of chloroplast genomes. Annu Rev Genet 19, 325-354.
[37] Posada D ( 2008). jModeltest: phylogenetic model averaging. Mol Biol Evol 25, 1253-1256.
[38] Ronquist F, Huelsenbeck JP ( 2003). Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574.
[39] Stamatakis A, Hoover P, Rougemont J ( 2008). A rapid bootstrap algorithm for the raxml web servers. Syst Biol 57, 758-771.
[40] Thiel T, Michalek W, Varshney R, Graner A ( 2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106, 411-422.
[41] Van de Paer C, Bouchez O, Besnard G ( 2018). Prospects on the evolutionary mitogenomics of plants: a case study on the olive family (Oleaceae). Mol Ecol Res 18, 407-423.
[42] Wallander E ( 2008). Systematics of Fraxinus( Oleaceae) and evolution of dioecy. Plant Syst Evol 273, 25-49.
[43] Wallander E, Albert VA ( 2000). Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am J Bot 87, 1827-1841.
[44] Wang WB, Yu H, Wang JH, Lei WJ, Gao JH, Qiu XP, Wang JS ( 2017). The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa( Oleaceae). Int J Mol Sci 18, 2288.
[45] Weng ML, Blazier JC, Govindu M, Jansen RK ( 2014). Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol 31, 645-659.
[46] Zhang TW, Fang YJ, Wang XM, Deng X, Zhang XW, Hu SN, Yu J ( 2012). The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes. PLoS One 7, e30531.
[47] Zhang X, Zhou T, Yang J, Sun JJ, Ju MM, Zhao YM, Zhao GF ( 2018). Comparative analyses of chloroplast genomes of Cucurbitaceae species: lights into selective pressures and phylogenetic relationships. Molecules 23, 2165.
[1] 柴永福,许金石,刘鸿雁,刘全儒,郑成洋,康慕谊,梁存柱,王仁卿,高贤明,张峰,福臣,刘晓,岳明. 华北地区主要灌丛群落物种组成及系统发育结构特征[J]. 植物生态学报, 2019, 43(9): 793-805.
[2] 曹槟, 李国杰, 赵瑞琳. 大小兴安岭地区红菇属物种多样性及其地理成分[J]. 生物多样性, 2019, 27(8): 854-866.
[3] 闫雅楠, 叶小齐, 吴明, 闫明, 张昕丽. 入侵植物加拿大一枝黄花根际解钾菌多样性及解钾活性[J]. 植物生态学报, 2019, 43(6): 543-556.
[4] 陈志祥, 姚雪莹, Stephen R.Downie, 王奇志. 直刺变豆菜叶绿体全基因组及其特征[J]. 生物多样性, 2019, 27(4): 366-372.
[5] 陈志远,刘珺,杨星鹏,刘梦,汪涯,张志斌,朱笃. 东乡野生稻可培养内生细菌群落组成及多样性[J]. 生物多样性, 2019, 27(12): 1320-1329.
[6] 董雪蕊, 张红, 张明罡. 基于系统发育的黄土高原地区木本植物多样性及特有性格局[J]. 生物多样性, 2019, 27(12): 1269-1278.
[7] 杜新宇, 卢金梅, 李德铢. 石松类和蕨类植物质体基因组结构演化研究进展[J]. 生物多样性, 2019, 27(11): 1172-1183.
[8] 梁思琪, 张宪春, 卫然. 利用整合分类学方法进行蕨类植物复合体的物种划分: 以线裂铁角蕨复合体为例[J]. 生物多样性, 2019, 27(11): 1205-1220.
[9] 赵国华, 王莹, 商辉, 周喜乐, 王爱华, 李玉峰, 王晖, 刘保东, 严岳鸿. 祖先性状重建法揭示铁线蕨属植物孢子表面纹饰的形态多样性及其演化[J]. 生物多样性, 2019, 27(11): 1228-1235.
[10] 孙德鑫, 刘向, 周淑荣. 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建[J]. 生物多样性, 2018, 26(7): 655-666.
[11] 侯勤曦, 慈秀芹, 刘志芳, 徐武美, 李捷. 基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护[J]. 生物多样性, 2018, 26(3): 217-228.
[12] 赵乐文, 陈梓熠, 邹滢, 付子钊, 吴桂林, 刘小容, 罗琦, 林忆雪, 李雄炬, 刘智通, 刘慧. 九种维管植物水力性状的演化趋势[J]. 植物生态学报, 2018, 42(2): 220-228.
[13] 陈自宏, 杨晓娜, 孙宁静, 徐玲, 郑元, 杨宇明. 中国西南高黎贡山绿僵菌物种多样性及其垂直分布特征[J]. 生物多样性, 2018, 26(12): 1308-1317.
[14] 李巧丽, 延娜, 宋琼, 郭军战. 鲁桑叶绿体基因组序列及特征分析[J]. 植物学报, 2018, 53(1): 94-103.
[15] 李文英, 李夏, 解开治, 邓旺秋, 庄文颖. 葡萄座腔菌科真菌的系统学和多样性探讨[J]. 生物多样性, 2017, 25(8): 874-885.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高翠;陈玉霞;包颖;冯旻;路安民. 白穗花有性器官与胚胎发育形态的研究 [J]. 植物学报, 2010, 45(06): 705 -712 .
[2] 蒋高明. 全球大气二氧化碳浓度升高对植物的影响[J]. 植物学报, 1995, 12(04): 1 -7 .
[3] 张军 韩碧文. 植物激素细胞和组织化学定位的研究进展[J]. 植物学报, 1995, 12(专辑3): 131 -142 .
[4] 汤彦承. 国际植物命名法规简介(V)[J]. 植物学报, 1984, 2(04): 51 -57 .
[5] 徐继. 保护固氮酶免受氧破坏的蛋白Fe—S蛋白Ⅱ[J]. 植物学报, 1986, 4(12): 1 -4 .
[6] . 国外大刊重要论文简介[J]. 植物学报, 2001, 18(05): 633 .
[7] 黄兆祥 郑珍贵 朱笃. 池杉—水稻系统的生态效应(1)系统中池杉的生长特性[J]. 植物学报, 1996, 13(02): 48 -51 .
[8] 谷瑞升 刘群录 陈雪梅 蒋湘宁. 木本植物蛋白提取和SDS-PACE分析方法的比较和优化[J]. 植物学报, 1999, 16(02): 171 -177 .
[9] 蒋高明. LI-6400光合作用测定系统:原理、性能、基本操作与常见故障的排除[J]. 植物学报, 1996, 13(增刊): 72 -76 .
[10] 李玲 罗蕴秀 何建辉 潘瑞炽. GL生根剂促进木本植物插枝生根[J]. 植物学报, 1996, 13(增刊): 63 -65 .