植物学报 ›› 2018, Vol. 53 ›› Issue (3): 305-312.doi: 10.11983/CBB18027

所属专题: 药用植物专辑

• 研究报告 • 上一篇    下一篇

基于SSR分子标记的酸浆属植物亲缘关系研究

朱宇佳1, 焦凯丽1, 罗秀俊1, 冯尚国1,2,*(), 王慧中1,2,*()   

  1. 1杭州师范大学生命与环境科学学院, 浙江省药用植物种质改良和质量监控重点实验室, 杭州 311121
    2湖南农业大学生物科学技术学院, 长沙 410128
  • 收稿日期:2018-01-28 接受日期:2018-05-09 出版日期:2018-05-01 发布日期:2018-06-05
  • 通讯作者: 冯尚国,王慧中 E-mail:shangguo007@126.com;whz62@163.com
  • 基金资助:
    国家自然科学基金(No.31470407)、浙江省科技计划(No.2014C32090)和杭州市科技局项目(No.20150932H04, No.20150932H03)

Genetic Relationship of Physalis Plants Revealed by Simple Sequence Repeat Markers

Zhu Yujia1, Jiao Kaili1, Luo Xiujun1, Feng Shangguo1,2,*(), Wang Huizhong1,2,*()   

  1. 1Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
    2College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, China;
  • Received:2018-01-28 Accepted:2018-05-09 Online:2018-05-01 Published:2018-06-05
  • Contact: Feng Shangguo,Wang Huizhong E-mail:shangguo007@126.com;whz62@163.com

摘要:

近年来, 由于营养价值高、果实可当水果食用且具有潜在的药用价值, 酸浆属(Physalis)植物在全球范围内受到了越来越多的关注。采用SSR分子标记技术对我国范围内主要分布的4种酸浆属植物的22份样品进行了亲缘关系研究, 结果表明, 20对SSR引物共扩增出118个位点, 其中107个(90.7%)为多态性位点; 平均种间遗传相似系数为0.501。UPGMA聚类和PCoA分析结果得出相似结论, 并且将供试酸浆属植物样品分为两大类。其中, 酸浆(P. alkekengi var. francheti)的所有样品与其它酸浆属植物的遗传距离最远, 单独聚为一类, 与前人的研究结果非常吻合。研究表明, SSR标记遗传信息丰富, 可以用于酸浆属植物的亲缘关系分析。研究结果为酸浆属种质资源保护提供了有效信息, 并且为酸浆属植物的分子辅助育种奠定了重要基础。

关键词: 酸浆属, 亲缘关系, SSR分子标记

Abstract:

In recent years, Physalis plants have attracted increasing attention worldwide due to their high nutritional value, edible fruit, and potential medicinal value. In this study, simple sequence repeat (SSR) markers were used to assess genetic relationships with 22 samples of four Physalis species mainly distributed in China. Twenty SSR primer pairs produced 118 loci, 90.7% (107) of which showed polymorphism. The average interspecies similarity coefficient was 0.501, which indicates a degree of genetic relationship among Physalis species. The results of UPGMA dendrography and PCoA plotting were similar, and all Physalis samples were grouped into two clusters. All P. alkekengi var. francheti samples, distant from any other Physalis species, constituted a separate cluster, which confirmed findings of previous studies. This study also indicated that SSR markers are rich in genetic information and could be used to assess the genetic diversity of Physalis species which provides rich useful information for protecting the Physalis germplasm resource and an important foundation for molecular assisted-breeding programs with Physalis.

Key words: Physalis, genetic relationship, SSR markers

表1

供试的22份酸浆属植物样本材料"

No. Species name Code Origin
1 Physalis minima XSJ1 Qianxi, Tangshan, Hebei
2 P. minima XSJ2 Mudan, Heze, Shandong
3 P. minima XSJ3 Lou’an, Anhui
4 P. minima XSJ4 Lishui, Zhejiang
5 P. angulata KZ1 Jianggan, Hangzhou, Zhejiang
6 P. angulata KZ2 Xiaoshan, Hangzhou, Zhejiang
7 P. angulata KZ3 Luotian, Huanggang, Hubei
8 P. angulata KZ4 Honghe, Yunnan
9 P. angulata KZ5 Najing, Jiangsu
10 P. angulata KZ6 Linhai, Taizhou, Zhejiang
11 P. angulata KZ7 Wenzhou, Zhejiang
12 P. angulata KZ8 Pujiang, Jinhua, Zhejiang
13 P. angulata KZ9 Xiajin, Dezhou, Shandong
14 P. alkekengi var. francheti SJ1 Faku, Shenyang, Liaoning
15 P. alkekengi var. francheti SJ2 Donggang, Dandong, Liaoning
16 P. alkekengi var. francheti SJ3 Nong’an, Changchun, Jilin
17 P. alkekengi var. francheti SJ4 Zoucheng, Jinan, Shandong
18 P. pubescens MSJ1 Faku, Shenyang, Liaoning
19 P. pubescens MSJ2 Nong’an, Changchun, Jilin
20 P. pubescens MSJ3 Chaoyang, Zhaodong, Heilongjiang
21 P. pubescens MSJ4 Mudanjiang, Heilongjiang
22 P. pubescens MSJ5 Hulunbeir, Inner Mongolia

表2

20对简单重复序列(SSR)引物的扩增结果及多态性信息"

Primer name Primer sequence (5'-3') Repeat
type
Tm No. of
loci
Polymorphic
loci
Polymorphism
rate (%)
SSR2 F: CATTGGGTTTCGCATCCAT AG 60 6 6 100.0
R: AGACAAGCCTAGGGGAAAGG
SSR9 F: TGCTCCGAGTTTTAGGGTTC AG 60 8 7 87.5
R: GCAGTTGGTAAAGTTGAGAGACG
SSR10 F: GCTTCCTATTGTGTTGCCTGA AT 58 5 4 80.0
R: ACTTTGGGTTTCGGGAATTG
SSR11 F: CAGCTGAAATAAGAGAGTGATTGG AG 57 4 3 75.0
R: CCCTCTTTTTCTCCTCCGAGT
SSR13 F: GCGGAATCCATTGTTTTTCA AC 58 9 8 88.9
R: CCGATGGAGTATAGTCACGCAAA
SSR15 F: GCTTGTTGATCAGCTTTCTTTG AT 57 7 6 85.7
R: TGGATCATAACCTTGCTAATGC
SSR36 F: ATGAACCACATGTCGGAGGA AG 58 7 6 85.7
R: GGGGATCCAAACGAAGTGTA
SSR54 F: CGGCTGGTATGCTTACAAAGAT AC 58 4 4 100.0
R: GCACTTCCACTGTTTTTAACTTCC
SSR55 F: CACCTACATAGGCAGCCAAAA AG 58 7 6 85.7
R: ATTTGTGGGCGGAGGAAG
SSR57 F: AGTGAAAAGCAGCCCATTCT AT 56 9 8 88.9
R: GGCGAAGCTGAATTGAAAAA
SSR67 F: GCTTCTGTTCCATTATTCACCA AG 56 5 5 100.0
R: GCAGTGTGGGATCAATCAAT
SSR68 F: GAAGCAAACAACTACACCCAAA AG 56 8 8 100.0
R: AAGCCTCGGATTTCATAGCA
SSR77 F: CATACCATAACTCCCCATCTCTC AG 57 4 3 75.0
R: TGCCGATTCTGATTTCTTCC
SSR92 F: TGGTTTGAGGATCAAGAAAGAA AAG 56 5 4 80.0
R: GTGGTATCAACGCAGAGTGG
SSR107 F: CATCCAACACCAGAAATACGC AAG 58 4 4 100.0
R: TCCAACTTTATCATTTCTTCCAC
SSR110 F: CACCCATATCCCAATCTTCTTC CTT 60 4 4 100.0
R: GGGTAATTTTCACGGGGAAT
SSR112 F: CTACGCCTACCACTTGCACA TCT 60 11 11 100.0
R: CAGTGGAAGCCTCAAGATCC
SSR118 F: AATCAAGGGTCAGAAGAAATGG ATC 58 2 2 100.0
R: GCAAGAATGGATGTGGGTGT
SSR123 F: TCAGTGGAGCGCGTATATCT ATC 60 5 5 100.0
R: GCGATCTCACCAAACCTCTC
SSR127 F: TTGGTTTGGCATAACTGCAA AAT 58 4 3 75.0
R: GGTTTGCAACTCTCATGCTG
Average - - - 5.9 5.4 90.4
Total - - - 118 107 -

图1

引物SSR55 (A)和SSR112 (B)在酸浆属植物中的电泳检测结果M: DNA分子标准。泳道1-22: 22个酸浆属样品(编号同表1)"

表3

酸浆属植物平均种间遗传相似系数"

Measurement Similarity
coefficient
Average interspecies genetic similarity
coefficient
0.501±0.074
P. angulata vs P. minima 0.600±0.042
P. alkekengi var. francheti vs P. minima 0.437±0.036
P. pubescens vs P. minima 0.570±0.037
P. angulata vs P. alkekengi var. francheti 0.444±0.044
P. angulata vs P. pubescens 0.514±0.043
P. pubescens vs P. alkekengi var. francheti 0.382±0.040

图2

4种酸浆属植物22份样品的简单重复序列(SSR)聚类树"

图3

基于简单重复序列(SSR)标记的22份酸浆属植物样品二维主坐标分析编码同表1。"

[1] 国家药典委员会 (2015). 中华人民共和国药典(一部). 北京: 中国医药科技出版社. pp. 360-361.
[2] 郭瑜, 吴东栋, 任志远, 王晓闻, 郭峰 (2017). 酸浆悬浮饮料的研制. 食品研究与开发 38(15), 89-92.
[3] 贾远敏, 陈重, 许琼明, 李笑然, 杨世林 (2013). 毛酸浆浆果的化学成分研究. 中草药 9, 1086-1090.
[4] 李晓岚, 陆嘉惠, 谢良碧, 张爱霞, 陈晓翠, 李学禹 (2015). 4种甘草属植物EST-SSR引物开发及其亲缘关系分析. 西北植物学报 35, 480-485.
[5] 骆丽萍, 成凡钦, 季龙, 虞和永 (2015). 毛酸浆的化学成分研究. 中国中药杂志 22, 4424-4427.
[6] 孙海涛, 高玉超 (2013). 毛酸浆番茄复合调味酱的研制. 中国调味品 38(12), 58-59, 67.
[7] 王晓英, 刘长姣, 段连海, 霍岩 (2014). 毛酸浆开发利用的研究进展. 中国酿造 2, 5-8.
[8] 王赢, 朱丹, 牛广财, 郑唯, 魏文毅, 刘鑫 (2017). 毛酸浆发酵果脯的研制. 中国酿造 36(8), 182-185.
[9] 许亮, 王荣祥, 杨燕云, 王冰 (2009). 中国酸浆属植物药用资源研究. 中国野生植物资源 28, 21-23.
[10] 杨金颖, 杨德草, 李津津 (2014). 酸浆的药理作用研究进展. 内蒙古中医药 33(25), 116-117.
[11] 中国科学院中国植物志编辑委员会 (1978). 中国植物志(第67卷). 北京: 科学出版社. pp. 50.
[12] Axelius B (1996). The phylogenetic relationships of the physaloid genera (Solanaceae) based on morphological data.Am J Bot 83, 118-124.
[13] Ding H, Hu ZJ, Yu LY, Ma ZY, Ma XQ, Chen Z, Wang D, Zhao XF (2014). Induction of quinone reductase (QR) by withanolides isolated from Physalis angulata L. var. villosa Bonati (Solanaceae). Steroids 86, 32-38.
[14] Feng SG, He RF, Lu JJ, Jiang MY, Shen XY, Jiang Y, Wang ZA, Wang HZ (2016a). Development of SSR markers and assessment of genetic diversity in medicinal Chrysanthemum morifolium cultivars. Front Genet 7, 113.
[15] Feng SG, Jiang MY, Shi YJ, Jiao KL, Shen CJ, Lu JJ, Ying QC, Wang HZ (2016b). Application of the ribosomal DNA ITS2 region of Physalis ( Solanaceae): DNA barcoding and phylogenetic study. Front Plant Sci 7, 1047.
[16] Feng SG, Jiao KL, Zhu YJ, Wang HF, Jiang MY, Wang HZ (2018). Molecular identification of species of Physalis ( Solanaceae) using a candidate DNA barcode: the chloroplast psbA-trnH intergenic region. Genome 61, 15-20.
[17] Fu N, Wang PY, Liu XD, Shen HL (2014). Use of EST-SSR markers for evaluating genetic diversity and fingerprinting celery (Apium graveolens L.) cultivars. Molecules 19, 1939-1955.
[18] Garzon-Martínez GA, Osorio-Guarín JA, Delgádillo-Duran P, Mayorga F, Enciso-Rodríguez FE, Landsman D, Mariño-Ramírez L, Barrero LS (2015). Genetic diversity and population structure in Physalis peruviana and related taxa based on InDels and SNPs derived from COSII and IRG markers. Plant Gene 4, 29-37.
[19] Gower JC (1966). Some distance properties of latent root and vector methods used in multivariate analysis.Biometrika 53, 325-338.
[20] Ji L, Yuan YL, Ma ZJ, Chen Z, Gan LS, Ma XQ, Huang DS (2013). Induction of quinone reductase (QR) by withanolides isolated from Physalis pubescens L. ( Solanaceae). Steroids 78, 860-865.
[21] Li X, Zhao JP, Yang M, Liu YL, Li ZC, Li RY, Li XR, Li N, Xu QM, Khan IA, Yang SL (2014). Physalins and withanolides from the fruits ofPhysalis alkekengi L. var. fran- chetii ( Mast.) Makino and the inhibitory activities against human tumor cells. Phytochem Lett 10, 95-100.
[22] Maggie WPS, Manos PS (2005). Untangling Physalis ( Solanaceae) from the physaloids: a two-gene phylogeny of the Physalinae. Syst Bot 30, 216-230.
[23] Nei M, Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases.Proc Natl Acad Sci USA 76, 5269-5273.
[24] Olmstead RG, Bohs L, Migid HA, Santiago-Valentin E, Garcia VF, Collier SM (2008). A molecular phylogeny of the Solanaceae.Taxon 57, 1159-1181.
[25] Rohlf FJ (2000). NTSYS-PC: numerical taxonomy and multivariate analysis system, version 2.00. Setauket, New York:Exeter Software.
[26] Simbaqueba J, Sánchez P, Sanchez E, Zarantes VMN, Chacon MI, Barrero LS, Mariño-Ramírez L (2011). Development and characterization of microsatellite markers for the cape gooseberry Physalis peruviana. PLoS One 6, e26719.
[27] Sun CP, Nie XF, Kang N, Zhao F, Chen LX, Qiu F (2017). A new phenol glycoside from Physalis angulata. Nat Prod Res 31, 1059-1065.
[28] Teshome A, Bryngelsson T, Dagne K, Geleta M (2015). Assessment of genetic diversity in Ethiopian field pea ( Pisum sativum L.) accessions with newly developed EST- SSR markers. BMC Genet 16, 102.
[29] Wang F, Yang T, Burlyaeva M, Li L, Jiang JY, Fang L, Redden R, Zong XX (2015). Genetic diversity of grasspea and its relative species revealed by SSR markers.PLoS One 10, e0118542.
[30] Wei JL, Hu XR, Yang JJ, Yang WC (2012). Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers. PLoS One 7, e50164.
[31] Xu XM, Guan YZ, Shan SM, Luo JG, Kong LY (2016). Withaphysalin-type withanolides from Physalis minima. Phytochem Lett 15, 1-6.
[32] Yang YK, Xie SD, Xu WX, Nian Y, Liu XL, Peng XR, Ding ZT, Qiu MH (2016). Six new physalins from Physalis alkekengi var. franchetii and their cytotoxicity and antibacterial activity. Fitoterapia 112, 144-152.
[33] Zamora-Tavares P, Vargas-Ponce O, Sanchez-Martínez J, Cabrera-Toledo D (2015). Diversity and genetic structure of the husk tomato ( Physalis philadelphica Lam.) in Wes- tern Mexico. Genet Res Crop Evol 62, 141-153.
[34] Zhang WN, Tong WY (2016). Chemical constituents and biological activities of plants from the genus Physalis. Chem Biodivers 13, 48-65.
[1] 何杰丽 石甜甜 陈凌 王海岗 乔治军 王瑞云. 糜子EST-SSR的开发及种质资源遗传多样性分析[J]. 植物学报, 2019, 54(5): 0-0.
[2] 胡亚妮, 张宗文, 吴斌, 高佳, 李艳琴. 基于ITS和ndhF-rpl32序列的荞麦种间亲缘关系分析[J]. 生物多样性, 2016, 24(3): 296-303.
[3] 郭琪, 郭大龙, 郭丽丽, 张琳, 侯小改. SSR分子标记在牡丹亲缘关系研究中的应用与研究进展[J]. 植物学报, 2015, 50(5): 652-664.
[4] 刘文, 梁红, 杨碧忍, 林杰文, 胡延吉. 一种高等植物小片段RNA分子标记方法[J]. 生物多样性, 2012, 20(1): 86-93.
[5] 罗向东, 戴亮芳, 万勇, 胡标林, 李佛生, 李霞, 谢建坤. 东乡野生稻与栽培稻正反交种间杂种F1的雄配子发生与发育[J]. 植物学报, 2011, 46(4): 407-412.
[6] 陈英. 常绿阔叶林谱系多样性对幼苗存活率的影响[J]. 植物生态学报, 2009, 33(6): 1084-1089.
[7] 严茂粉, 李向华, 王克晶. 北京地区野生大豆种群SSR标记的遗传多样性评价[J]. 植物生态学报, 2008, 32(4): 938-950.
[8] 李潞滨;郭晓军;彭镇华;刘贯水;袁洪水;朱宝成;杨凯*. AFLP 引物组合数量对准确研究竹子系统关系的影响[J]. 植物学报, 2008, 25(04): 449-454.
[9] 王丽侠, 李英慧, 李伟, 朱莉, 关媛, 宁学成, 关荣霞, 刘章雄, 常汝镇, 邱丽娟. 长江春大豆核心种质构建及分析[J]. 生物多样性, 2004, 12(6): 578-585.
[10] 吴萍, 李奕仁, 王金玉, 陈宽维. 应用微卫星标记分析中国地方鸡种的遗传变异[J]. 生物多样性, 2003, 11(6): 461-466.
[11] 李太武, 李成华, 宋林生, 苏秀榕. 5个泥蚶群体遗传多样性的RAPD分析[J]. 生物多样性, 2003, 11(2): 118-124.
[12] 高述民李凤兰陆帼一 杜慧芳赵英. 中国大蒜(Allium sativumL.)18个品种的酯酶同工酶多态性分析[J]. 植物学报, 2003, 20(06): 723-729.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王立林. 离体条件下花芽分化研究的概况[J]. 植物学报, 1989, 6(02): 72 -76 .
[2] 施国新 徐祥生 王文 杜开河. 莲子叶细胞中变形质体的观察[J]. 植物学报, 1993, 10(04): 47 -49 .
[3] 周世强. 冷箭竹无性系种群生物量的初步研究[J]. 植物学报, 1995, 12(增刊): 63 -65 .
[4] 严菊强 薛庆中 王以秀 沈圣泉. 凝固剂对水稻花药培养愈伤组织诱导的影响[J]. 植物学报, 1991, 8(04): 32 -35 .
[5] 胡适宜. 植物胚胎学实验方法(一) 花粉生活力的测定[J]. 植物学报, 1993, 10(02): 60 -62 .
[6] 张宝泽. 盐胁迫下不同的钙盐对小麦幼苗耐盐性的影响[J]. 植物学报, 1997, 14(04): 48 -50 .
[7] 侯文胜 郭三堆 路明. 利用花粉管通道法获得转雪花莲凝集素基因(sgna)小麦[J]. 植物学报, 2003, 20(02): 198 -204 .
[8] 李晶 沙伟. 苔藓植物分子系统学研究概况[J]. 植物学报, 2004, 21(02): 172 -179 .
[9] 周丽娟;陈小兰;邓国宾;王炎炎;刘微;陈善娜*. 改性纳米TiO2 对蓝藻的生理生态影响[J]. 植物学报, 2008, 25(01): 67 -71 .
[10] 侯蜀光 章正军. 云南泥炭及成炭植物的研究进展[J]. 植物学报, 2000, 17(专辑): 297 -299 .