植物学报 ›› 2018, Vol. 53 ›› Issue (1): 72-81.doi: 10.11983/CBB17004

• 研究报告 • 上一篇    下一篇

四季桂抗氧化防御系统对干旱、高温及协同胁迫的响应

许馨露, 李丹丹, 马元丹*(), 翟建云, 孙建飞, 高岩, 张汝民   

  1. 浙江农林大学林业与生物技术学院, 临安 311300
  • 收稿日期:2017-01-06 接受日期:2017-05-04 出版日期:2018-01-01 发布日期:2018-08-10
  • 通讯作者: 马元丹 E-mail:mayuandan@gmail.com
  • 基金资助:
    国家自然科学基金(No.31470704)和浙江省与中国林业科学研究院省院合作林业科技项目(No.2016SY06)

Responses of the Antioxidant Defense System of Osmanthus fragrans cv. ‘Tian Xiang TaiGe’ to Drought, Heat and the Synergistic Stress

Xinlu Xu, Dandan Li, Yuandan Ma*(), Jianyun Zhai, Jianfei Sun, Yan Gao, Rumin Zhang   

  1. School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an 311300, China
  • Received:2017-01-06 Accepted:2017-05-04 Online:2018-01-01 Published:2018-08-10
  • Contact: Yuandan Ma E-mail:mayuandan@gmail.com

摘要:

以天香台阁四季桂(Osmanthus fragrans cv. ‘Tian Xiang TaiGe’)为材料, 研究干旱(轻度、中度和重度)、高温(40°C)及干旱高温协同胁迫对四季桂叶片抗氧化防御系统的影响。结果显示, 干旱胁迫下, 四季桂活性氧(ROS)逐渐积累, 膜脂过氧化程度加深; 轻度和中度干旱胁迫下, 抗氧化酶活性显著升高; 重度干旱胁迫下, 抗坏血酸(AsA)及其还原力(AsA/DHA)显著降低, 谷胱甘肽(GSH)及其还原力(GSH/GSSG)以及抗坏血酸-谷胱甘肽(AsA-GSH)循环相关酶活性呈先上升后下降的趋势, 在中度干旱胁迫时达到峰值。高温胁迫显著增强ROS积累、抗氧化酶活性、抗氧化剂含量及AsA-GSH循环效率。干旱高温协同胁迫下, 四季桂所受伤害大于单一胁迫, ROS在抗氧化酶的作用下增幅减缓; 随着胁迫强度的加剧, AsA-GSH循环效率呈先增加后下降的趋势, 重度协同胁迫时显著降低, 无法维持氧化还原平衡。四季桂在干旱高温胁迫下能快速启动体内抗氧化防御系统, 清除体内过量的ROS, 增加机体还原力, 以减缓胁迫带来的伤害。

关键词: 四季桂, 干旱, 高温, 活性氧, 抗氧化酶, 抗坏血酸-谷胱甘肽循环

Abstract:

In this study, we explored the solo effect of drought stress (control, light, moderate and heavy), heat stress (control 28°C, heat 40°C) and their dual stresses on the antioxidant defense system of Osmanthus fragrans cv. ‘Tian Xiang TaiGe’. The experiment data showed that after drought treatment, reactive oxygen species (ROS) accumulated gradually and membrane lipid peroxidation increased; the activity of antioxidant enzymes increased significantly under light and moderate drought stress. Ascorbic acid (AsA) and its reducing power (AsA/DHA) decreased significantly under heavy drought stress, whereas glutathione (GSH) and its reducing power (GSH/GSSG) as well as the activity of enzymes related to ascorbate glutathione cycle (AsA-GSH cycle) showed a trend of first increasing and then decreasing, with the peak reached after moderate drought stress. Unlike drought stress, ROS accumulation, antioxidant enzyme activity, antioxidant content and AsA-GSH cycle efficiency all improved significantly with heat stress. Furthermore, we found that the dual stresses injured the cultivar more severely than either stress alone. ROS level increased slowly via antioxidant enzyme activity, and the AsA-GSH cycle efficiency was enhanced at first and then decreased significantly with increasing dual stresses, especially after severe stress, and was unable to maintain oxidation reduction equilibrium. Under drought and heat stress, the cultivar quickly activated the antioxidant defense system to eliminate ROS, which improved the reducing power of the organism to reduce the environmental damage.

Key words: Osmanthus fragrans var. semperflorens, drought, heat, reactive oxygen species, antioxidant enzyme, ascorbate glutathione cycle

表1

干旱高温胁迫对天香台阁四季桂活性氧和丙二醛含量的影响"

Temperature Treatment intensity O2 (nmol·g-1 FW) H2O2 (μmol·g-1 FW) MDA (μmol·g-1 FW)
28°C CK 7.56±0.77 C 20.11±1.01 D 4.09±0.64 C
Light drought 14.04±0.44 B 33.08±2.33 C 7.42±1.32 B
Moderate drought 15.49±0.45 B 40.60±2.30 B 14.29±2.55 A
Heavy drought 18.84±2.05 A 49.24±1.74 A 15.39±1.69 A
Sum of squares Between groups (d.f.1=3) 402.69 2743.44 532.18
Within groups (d.f.2=20) 25.94 73.89 57.58
40°C CK 10.92±0.81 b 26.52±0.51 c 9.14±0.67 b
Light drought 12.79±0.78 a 37.52±3.73 b 14.11±1.51 a
Moderate drought 11.92±0.64 ab 45.60±0.92 a 16.36±2.29 a
Heavy drought 11.30±1.69 ab 34.64±4.18 b 8.48±1.74 b
Sum of squares Between groups (d.f.1=3) 11.98 1117.58 264.48
Within groups (d.f.2=20) 22.59 162.38 55.13
P: Ft ** ns **
P: Fd ** ** *
P: FFd ** ** **

图1

干旱高温胁迫对天香台阁四季桂抗氧化酶活性的影响(A) 超氧化物歧化酶(SOD)活性; (B) 过氧化物酶(POD)活性; (C) 过氧化氢酶(CAT)活性。Ft: 不同温度的影响; Fd: 不同处理强度的影响; Ft×Fd: 植物组织对干旱高温胁迫的不同响应。每个数值为平均值±标准误(n=6)。不同大写字母表示不同干旱处理间差异显著, 不同小写字母表示不同高温处理间差异显著。根据Tukey多重比较, * P<0.05; ** P<0.01; ns: 不显著"

图2

干旱高温胁迫对天香台阁四季桂抗坏血酸含量的影响(A) 抗坏血酸(AsA)含量; (B) 脱氢抗坏血酸(DHA)含量; (C) AsA/DHA。Ft: 不同温度的影响; Fd: 不同处理强度的影响; Ft×Fd: 植物组织对干旱高温胁迫的不同响应。每个数值为平均值±标准误(n=6)。不同大写字母表示不同干旱处理间差异显著, 不同小写字母表示不同高温处理间差异显著。根据Tukey多重比较, * P<0.05; ** P<0.01; ns: 不显著"

图3

干旱高温胁迫对天香台阁四季桂谷胱甘肽含量的影响(A) 谷胱甘肽(GSH)含量; (B) 氧化型谷胱甘肽(GSSG)含量; (C) GSH/GSSG。Ft: 不同温度的影响; Fd: 不同处理强度的影响; Ft×Fd: 植物组织对干旱高温胁迫的不同响应。每个数值为平均值±标准误(n=6)。不同大写字母表示不同干旱处理间差异显著, 不同小写字母表示不同高温处理间差异显著。根据Tukey多重比较, * P<0.05; ** P<0.01; ns: 不显著"

图4

干旱高温胁迫对天香台阁四季桂AsA-GSH循环相关酶活性的影响(A) 抗坏血酸过氧化物酶(APX)活性; (B) 脱氢抗坏血酸还原酶(DHAR)活性; (C) 单脱氢抗坏血酸还原酶(MDHAR)活性; (D) 谷胱甘肽还原酶(GR)活性。Ft: 不同温度的影响; Fd: 不同处理强度的影响; Ft×Fd: 植物组织对干旱高温胁迫的不同响应。每个数值为平均值±标准误(n=6)。不同大写字母表示不同干旱处理间差异显著, 不同小写字母表示不同高温处理间差异显著。根据Tukey多重比较, * P<0.05; ** P<0.01; ns: 不显著"

[1] 陈晓峰, 江洪, 牛晓栋, 张金梦, 刘玉莉, 方成圆 (2016). 季节性高温和干旱对亚热带毛竹林碳通量的影响. 应用生态学报 27, 335-344.
[2] 李忠光, 龚明 (2005). 植物中超氧阴离子自由基测定方法的改进. 云南植物研究 27, 211-216.
[3] 吴永波, 叶波 (2016). 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响. 生态学报 36, 403-410.
[4] 谢华英, 马均, 代邹, 李玥, 孙加威, 赵建红, 徐徽, 孙永健 (2016). 抽穗期高温干旱胁迫对杂交水稻产量及生理特性的影响. 杂交水稻 31, 62-69.
[5] Arab L, Kreuzwieser J, Kruse J, Zimmer I, Ache P, Alfarraj S, Al-rasheid KAS, Schnitzler JP, Hedrich R, Rennenberg H (2016). Acclimation to heat and drought- lessons to learn from the date palm ( Phoenix dactylifera). Environ Exp Bot 125, 20-30.
[6] Doulis AG, Debian N, Kingston-Smith AH, Foyer CH (1997). Differential localization of antioxidants in maize leaves.Plant Physiol 114, 1031-1037.
[7] Foyer CH, Noctor G (2011). Ascorbate and glutathione: the heart of the redox hub.Plant Physiol 155, 2-18.
[8] Giannopolitis CN, Ries SK (1977). Superoxide dismutases: I. Occurrence in higher plants.Plant Physiol 59, 309-314.
[9] Hijioka Y, Lin E, Pereira J, Corlett R, Cui X, Insarov G, Lasco R, Lindgren E, Surjan A (2014).Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part B: Regional Aspects, Contribution of Working Group II, Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp.1327-1370.
[10] Hodges DM, Delong JM, Forney CF, Prange RK (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds.Pl- anta 207, 604-611.
[11] Hossain MA, Nakano Y, Asada K (1984). Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide.Plant Cell Physiol 25, 385-395.
[12] Imahori Y, Takemura M, Bai JH (2008). Chilling-induced oxidative stress and antioxidant responses in mume ( Pru- nus mume) fruit during low temperature storage. Postharvest Biol Technol 49, 54-60.
[13] Kumari GJ, Reddy AM, Naik ST, Kumar SG, Prasanthi J, Sriranganayakulu G, Reddy PC, Sudhakar C (2006). Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings.Biol Plant 50, 219-226.
[14] Lei P, Xu ZQ, Ding Y, Tang B, Zhang YX, Li HS, Feng XH, Xu H (2015). Effect of poly (γ-glutamic acid) on the physiological responses and calcium signaling of rape seedlings ( Brassica napus L.) under cold stress. J Agric Food Chem 63, 10399-10406.
[15] Lei P, Xu ZQ, Liang JF, Luo XH, Zhang YX, Feng XH, Xu H (2016). Poly (γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L. Plant Growth Regul 78, 233-241.
[16] Li H, Xu HL, Zhang PJ, Gao MQ, Wang D, Zhao HJ (2017). High temperature effects on D1 protein turnover in three wheat varieties with different heat susceptibility.Plant Grow- th Regul 78, 1-9.
[17] Liu CC, Liu YG, Guo K, Fan DY, Li GQ, Zheng YR, Yu LF, Yang R (2011). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China.Environ Exp Bot 71, 174-183.
[18] Ma YH, Ma FW, Wang YH, Zhang JK (2011). The responses of the enzymes related with ascorbate-gluta- thione cycle during drought stress in apple leaves.Acta Physiol Plant 33, 173-180.
[19] Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015). Exogenous glutathione confers high temperature stress tolerance in mung bean ( Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112, 44-54.
[20] Nakano Y, Asada K (1981). Hydrogen peroxide is scaven- ged by ascorbate-specific peroxidase in spinach chloroplasts.Plant Cell Physiol 22, 867-880.
[21] Rai AC, Singh M, Shah K (2012). Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiol Biochem 61, 108-114.
[22] Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003). Fingerprints of global warming on wild animals and plants.Nature 421, 57-60.
[23] Schaedle M, Bassham JA (1977). Chloroplast glutathione reductase.Plant Physiol 59, 1011-1012.
[24] Sharma P, Jha AB, Dubey RS, Pessarakli M (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.J Bot 2012, 217037.
[25] Silva EN, Ferreira-Silva SL, Fontenele ADV, Ribeiro RV, Viégasc RA, Silveira JAG (2010). Photosynthetic chan- ges and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167, 1157-1164.
[26] Suzuki N, Koussevitzky S, Mittler R, Miller G (2012). ROS and redox signaling in the response of plants to abiotic stress.Plant Cell Environ 35, 259-270.
[27] Wang SC, Liang D, Li C, Hao Yl, Ma FW, Shu HR (2012). Influence of drought stress on the cellular ultrastructure and antioxidant systemin leaves of drought-tolerant and drought-sensitive apple rootstocks.Plant Physiol Biochem 51, 81-89.
[28] Wu XX, He J, Ding HD, Zhu ZW, Chen JL, Xu S, Zha DS (2015). Modulation of zinc-induced oxidative damage in Solanum melongena by 6-benzylaminopurine involves ascorbate-glutathione cyclemetabolism. Environ Exp Bot 116, 1-11.
[29] Zou MQ, Yuan LY, Zhu SD, Liu S, Ge JT, Wang CG (2016). Response of osmotic adjustment and ascorbate-glutathione cycle to heat stress in a heat-sensitive and a heat-tolerant genotype of wucai ( Brassica campestris L.). Sci Hortic 211, 87-94.
[1] 代宇佳,罗晓峰,周文冠,陈锋,帅海威,杨文钰,舒凯. 生物和非生物逆境胁迫下的植物系统信号[J]. 植物学报, 2019, 54(2): 255-264.
[2] 杨浩,刘晨,王志飞,胡秀丽,王台. 作物花粉高温应答机制研究进展[J]. 植物学报, 2019, 54(2): 157-167.
[3] 郜怀峰,张亚飞,王国栋,孙希武,贺月,彭福田,肖元松. 钼在桃树干旱胁迫响应中的作用解析[J]. 植物学报, 2019, 54(2): 227-236.
[4] 马丹颖, 季东超, 徐勇, 陈彤, 田世平. 活性氧调控植物细胞自噬的研究进展[J]. 植物学报, 2019, 54(1): 81-92.
[5] 李伟晶, 陈世苹, 张兵伟, 谭星儒, 王珊珊, 游翠海. 半干旱草原土壤呼吸组分区分与菌根呼吸的贡献[J]. 植物生态学报, 2018, 42(8): 850-862.
[6] 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773.
[7] 汪俊宇, 王小东, 马元丹, 傅卢成, 周欢欢, 王彬, 张汝民, 高岩. ‘波叶金桂’对干旱和高温胁迫的生理生态响应[J]. 植物生态学报, 2018, 42(6): 681-691.
[8] 张宪省. 我国科学家在程序性细胞死亡机制研究领域取得重大突破[J]. 植物学报, 2018, 53(4): 445-446.
[9] 赵曦娟, 钱礼超, 刘玉乐. 中国科学家在植物程序性细胞死亡领域取得重要成果[J]. 植物学报, 2018, 53(4): 447-450.
[10] 何光明, 邓兴旺. 死亡信号传递: 叶绿体与线粒体间信号交流调控植物程序性细胞死亡[J]. 植物学报, 2018, 53(4): 441-444.
[11] 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251.
[12] 刘继亮, 李锋瑞. 干旱区绿洲扩张方式对土壤生物优势类群及功能的影响[J]. 生物多样性, 2018, 26(10): 1116-1126.
[13] 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032.
[14] 许红梅, 李进, 张元明. 水分条件对人工培养齿肋赤藓光化学效率及生理特性的影响[J]. 植物生态学报, 2017, 41(8): 882-893.
[15] 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王伟 钟英长. 紫杉醇生物合成的研究[J]. 植物学报, 1999, 16(02): 138 -149 .
[2] 吴楚 王政权. 冰冻胁迫下树木管状分子内腔隙和栓塞的形成及其修复[J]. 植物学报, 2001, 18(01): 58 -63 .
[3] 金岳杏 秦慧贞 王希蕖. 植物碎片组织结构在刑事侦察中的应用[J]. 植物学报, 1994, 11(专辑): 68 .
[4] 宋丽 李李 储昭庆 薛红卫. 拟南芥油菜素内酯信号转导研究进展[J]. 植物学报, 2006, 23(5): 556 -563 .
[5] 路安民. 被子植物系统学的方法论[J]. 植物学报, 1985, 3(03): 21 -28 .
[6] 赵微平. 纪念崔澂教授,学习他宽厚待人、严谨治学的精神[J]. 植物学报, 1998, 15(专辑): 20 -21 .
[7] 华中农业大学植物显微技术组. 爱氏苏木精整体染色及番红—固绿双重染色滴染法在石蜡切片中的运用[J]. 植物学报, 1985, 3(06): 56 .
[8] 李跃强 王学臣. 根信号及其在植物水分利用最优化中的调节作用[J]. 植物学报, 1994, 11(02): 37 -43 .
[9] 杨文 何如洲 程剑平 郭荣发 邝雪梅. 甘蔗过氧化物酶同工酶分析[J]. 植物学报, 1998, 15(06): 65 -69 .
[10] 何余堂 涂金星 傅廷栋 陈宝元. 芸薹属自交不亲和基因的分子生物学及进化模式[J]. 植物学报, 2003, 20(05): 513 -521 .