Chinese Bulletin of Botany ›› 2023, Vol. 58 ›› Issue (2): 274-284.DOI: 10.11983/CBB22265
• INVITED PROTOCOLS • Previous Articles Next Articles
Fanfan Zhang1, Xinying Xing1, Wenqing Shi2, Yi Shen2, Zhukuan Cheng2,3,*()
Received:
2022-11-20
Accepted:
2023-01-10
Online:
2023-03-01
Published:
2023-03-15
Contact:
*E-mail: Fanfan Zhang, Xinying Xing, Wenqing Shi, Yi Shen, Zhukuan Cheng. Protocals for Oligonucleotide Fluorescence in situ Hybridization in Plants[J]. Chinese Bulletin of Botany, 2023, 58(2): 274-284.
Figure 1 Outlines of oligonucleotide fluorescence in situ hybridization (A) Amplification and labeling of oligonucleotide-based probes; (B) Procedures of fluorescence in situ hybridization (FISH)
Figure 2 Characterization of rice meiotic pachytene chromosomes by oligonucleotide fluorescence in situ hybridization (A) Pachytene chromosomes; (B) The signal of oligonucleotide probe specific to the short arm of chromosome 11 in rice (11 S); (C) The signal of oligonucleotide probe specific to the long arm of chromosome 11 in rice (11 L); (D) Three-channel combined panel (Blue: Chromosomes; Green: 11 S; Red: 11 L). Bars=5 μm
[1] |
程新杰, 于恒秀, 程祝宽 (2019). 水稻减数分裂染色体分析方法. 植物学报 54, 503-508.
DOI |
[2] |
Albert PS, Zhang T, Semrau K, Rouillard JM, Kao YH, Wang CJR, Danilova TV, Jiang JM, Birchler JA (2019). Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc Natl Acad Sci USA 116, 1679-1685.
DOI PMID |
[3] |
Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, Chang YM, Li JB, Senaratne TN, Williams BR, Rouillard JM, Wu CT (2012). Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci USA 109, 21301-21306.
DOI PMID |
[4] |
Boyle S, Rodesch MJ, Halvensleben HA, Jeddeloh JA, Bickmore WA (2011). Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res 19, 901-909.
DOI URL |
[5] |
Braz GT, do Vale Martins L, Zhang T, Albert PS, Birchler JA, Jiang JM (2020). A universal chromosome identification system for maize and wild Zea species. Chromosome Res 28, 183-194.
DOI |
[6] |
Braz GT, He L, Zhao HN, Zhang T, Semrau K, Rouillard JM, Torres GA, Jiang JM (2018). Comparative Oligo- FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208, 513-523.
DOI URL |
[7] |
Cheng ZK, Buell CR, Wing RA, Jiang JM (2002). Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res 10, 379-387.
DOI URL |
[8] |
Do Vale Martins L, de Oliveira Bustamante F, da Silva Oliveira AR, da Costa AF, de Lima Feitoza L, Liang QH, Zhao HN, Benko-Iseppon AM, Muñoz-Amatriaín M, Pedrosa-Harand A, Jiang JM, Brasileiro-Vidal AC(2021). BAC- and Oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris. Chromosoma 130, 133-147.
DOI PMID |
[9] |
Do Vale Martins L, Yu F, Zhao HN, Dennison T, Lauter N, Wang HY, Deng ZH, Thompson A, Semrau K, Rouillard JM, Birchler JA, Jiang JM (2019). Meiotic crossovers characterized by haplotype-specific chromosome painting in maize. Nat Commun 10, 4604.
DOI PMID |
[10] |
Han YH, Zhang T, Thammapichai P, Weng YQ, Jiang JM (2015). Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200, 771-779.
DOI URL |
[11] |
He L, Braz GT, Torres GA, Jiang JM (2018). Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma 127, 505-513.
DOI |
[12] |
Hou LL, Xu M, Zhang T, Xu ZH, Wang WY, Zhang JX, Yu MM, Ji W, Zhu CW, Gong ZY, Gu MH, Jiang JM, Yu HX (2018). Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biol 18, 110.
DOI PMID |
[13] |
Idziak D, Betekhtin A, Wolny E, Lesniewska K, Wright J, Febrer M, Bevan MW, Jenkins G, Hasterok R (2011). Painting the chromosomes of Brachypodium: current status and future prospects. Chromosoma 120, 469-479.
DOI URL |
[14] |
Jiang JM (2019). Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 27, 153-165.
DOI |
[15] |
Jiang JM, Gill BS (2006). Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49, 1057-1068.
DOI URL |
[16] |
Liu GQ, Zhang T (2021). Single copy oligonucleotide fluorescence in situ hybridization probe design platforms: development, application and evaluation. Int J Mol Sci 22, 7124.
DOI URL |
[17] |
Liu XY, Sun S, Wu Y, Zhou Y, Gu SW, Yu HX, Yi CD, Gu MH, Jiang JM, Liu B, Zhang T, Gong ZY (2020). Dual-color Oligo-FISH can reveal chromosomal variations and evolution in Oryza species. Plant J 101, 112-121.
DOI URL |
[18] |
Lou QF, Zhang YX, He YH, Li J, Jia L, Cheng CY, Guan W, Yang SQ, Chen JF (2014). Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. Plant J 78, 169-179.
DOI URL |
[19] |
Lysak MA, Fransz PF, Ali HBM, Schubert I (2001). Chromosome painting in Arabidopsis thaliana. Plant J 28, 689-697.
DOI PMID |
[20] |
Meng Z, Zhang ZL, Yan TY, Lin QF, Wang Y, Huang WY, Huang YJ, Li ZJ, Yu QY, Wang JP, Wang K (2018). Comprehensively characterizing the cytological features of Saccharum spontaneum by the development of a comp- lete set of chromosome-specific Oligo probes. Front Plant Sci 9, 1624.
DOI URL |
[21] |
Qu MM, Li KP, Han YL, Chen L, Li ZY, Han YH (2017). Integrated karyotyping of woodland strawberry (Fragaria vesca) with Oligopaint FISH probes. Cytogenet Genome Res 153, 158-164.
DOI PMID |
[22] |
Shi PY, Sun HJ, Liu GQ, Zhang X, Zhou JW, Song RR, Xiao J, Yuan CX, Sun L, Wang ZK, Lou QF, Jiang JM, Wang XE, Wang HY (2022). Chromosome painting reveals inter-chromosomal rearrangements and evolution of subgenome D of wheat. Plant J 112, 55-67.
DOI URL |
[23] |
Xin HY, Zhang T, Han YH, Wu YF, Shi JS, Xi ML, Jiang JM (2018). Chromosome painting and comparative physical mapping of the sex chromosomes in Populus tomentosa and Populus deltoides. Chromosoma 127, 313-321.
DOI |
[24] |
Yamada NA, Rector LS, Tsang P, Carr E, Scheffer A, Sederberg MC, Aston ME, Ach RA, Tsalenko A, Sampas N, Peter B, Bruhn L, Brothman AR (2011). Visualization of fine-scale genomic structure by oligonucleotide-based high-resolution FISH. Cytogenet Genome Res 132, 248-254.
DOI PMID |
[25] |
Yu F, Zhao XW, Chai J, Ding XE, Li XT, Huang YJ, Wang XH, Wu JY, Zhang MQ, Yang QH, Deng ZH, Jiang JM (2022). Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. New Phytol 233, 1953-1965.
DOI URL |
[26] |
Zhang FF, Shen Y, Miao CB, Cao YW, Shi WQ, Du GJ, Tang D, Li YF, Luo Q, Cheng ZK (2020). OsRAD51D promotes homologous pairing and recombination by preventing nonhomologous interactions in rice meiosis. New Phytol 227, 824-839.
DOI PMID |
[27] |
Zhang FF, Tang D, Shen Y, Xue ZH, Shi WQ, Ren LJ, Du GJ, Li YF, Cheng ZK (2017). The F-box protein ZYGO1 mediates bouquet formation to promote homologous pairing, synapsis, and recombination in rice meiosis. Plant Cell 29, 2597-2609.
DOI URL |
[28] |
Zhang T, Liu GQ, Zhao HN, Braz GT, Jiang JM (2021). Chorus2: design of genome-scale oligonucleotide-based probes for fluorescence in situ hybridization. Plant Biotechnol J 19, 1967-1978.
DOI PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||