Chinese Bulletin of Botany ›› 2023, Vol. 58 ›› Issue (6): 1008-1018.DOI: 10.11983/CBB22208
• SPECIAL TOPICS • Previous Articles
Biao Zhang1,2, Jian Wu3, Yang Zhang4, Xiaowei Dong4, Shuo Han3, Xin Gao3, Congwu Du3, Huiying Li3, Xuefa Chong3, Yingying Zhu1, Haiwei Liu1,*()
Received:
2022-08-31
Accepted:
2023-01-10
Online:
2023-11-01
Published:
2023-11-27
Contact:
* E-mail: heaveyliu@163.com
Biao Zhang, Jian Wu, Yang Zhang, Xiaowei Dong, Shuo Han, Xin Gao, Congwu Du, Huiying Li, Xuefa Chong, Yingying Zhu, Haiwei Liu. Research Progress on Physiological Functions of Suberin lamellae in Water and Solutes Transport[J]. Chinese Bulletin of Botany, 2023, 58(6): 1008-1018.
Figure 1 Schematic diagram of suberin lamellae acts as bi-directional barrier (modified from Barberon et al., 2016) Suberin lamellae not only blocks water and solute from entering the root, but also prevents them from flowing out.
Figure 2 Schematic diagram of a root cross-section (modified from Kim et al., 2018) Water and solute transport into the stele through three path- ways. The water and solute absorbed by root must be transported radially through the rhizodermis, exodermis, cortex and endodermis to reach the stele. Casparian strips (yellow dots) and suberin lamellae (purple lines) in the exodermis and endodermis interrupt water and solute radial transport into the stele.
酶 | 物种 | 基因 | 参考文献 |
---|---|---|---|
β-酮酯酰-CoA合成酶 | 东南景天 | SaKCS20 | Tao et al., |
ZIP转运体 | 东南景天 | SaZIP1 | Tao et al., |
HMA转运体 | 东南景天 | SaHMA2 | Tao et al., |
东南景天 | SaHMA4 | Tao et al., | |
细胞色素P450 | 拟南芥 | AtCYP86A1/HORST | Wang et al., |
印度红树 | AoCYP94B1 | Krishnamurthy et al., | |
印度红树 | AoCYP94B3 | Krishnamurthy et al., | |
甘油-3-磷酸酰基转移酶 | 拟南芥 | AtGPAT5 | Hsu et al., |
东南景天 | SaGPAT5 | Tao et al., | |
类蛋白 | 拟南芥 | AtESB1 | Kreszies et al., |
GDSL型酯酶/脂肪酶 | 拟南芥 | AtGELP22 | Ursache et al., |
拟南芥 | AtGELP38 | Ursache et al., | |
拟南芥 | AtGELP49 | Ursache et al., | |
拟南芥 | AtGELP51 | Ursache et al., | |
拟南芥 | AtGELP96 | Ursache et al., | |
ATP结合盒式蛋白 | 拟南芥 | AtABCG1 | Shanmugarajah et al., |
拟南芥 | AtABCG2 | Shanmugarajah et al., | |
拟南芥 | AtABCG6 | Shanmugarajah et al., | |
拟南芥 | AtABCG20 | Shanmugarajah et al., | |
水稻 | OsRCN1/ABCG5 | Shiono et al., | |
脂质转运蛋白 | 拟南芥 | AtLTPI4 | Deeken et al., |
拟南芥 | AtLTPG15 | Lee and Suh, | |
MYB蛋白 | 拟南芥 | AtMYB41 | Shukla et al., |
拟南芥 | AtMYB107 | Gou et al., | |
拟南芥 | AtMYB9 | Lashbrooke et al., | |
拟南芥 | AtMYB39/SUBERMAN | Cohen et al., | |
拟南芥 | AtMYB53 | Shukla et al., | |
拟南芥 | AtMYB92 | Shukla et al., | |
拟南芥 | AtMYB93 | Shukla et al., | |
拟南芥 | AtMYB70 | Wan et al., |
Table 1 List of enzymes and genes that were functionally characterized in the biosynthesis and regulation of suberin
酶 | 物种 | 基因 | 参考文献 |
---|---|---|---|
β-酮酯酰-CoA合成酶 | 东南景天 | SaKCS20 | Tao et al., |
ZIP转运体 | 东南景天 | SaZIP1 | Tao et al., |
HMA转运体 | 东南景天 | SaHMA2 | Tao et al., |
东南景天 | SaHMA4 | Tao et al., | |
细胞色素P450 | 拟南芥 | AtCYP86A1/HORST | Wang et al., |
印度红树 | AoCYP94B1 | Krishnamurthy et al., | |
印度红树 | AoCYP94B3 | Krishnamurthy et al., | |
甘油-3-磷酸酰基转移酶 | 拟南芥 | AtGPAT5 | Hsu et al., |
东南景天 | SaGPAT5 | Tao et al., | |
类蛋白 | 拟南芥 | AtESB1 | Kreszies et al., |
GDSL型酯酶/脂肪酶 | 拟南芥 | AtGELP22 | Ursache et al., |
拟南芥 | AtGELP38 | Ursache et al., | |
拟南芥 | AtGELP49 | Ursache et al., | |
拟南芥 | AtGELP51 | Ursache et al., | |
拟南芥 | AtGELP96 | Ursache et al., | |
ATP结合盒式蛋白 | 拟南芥 | AtABCG1 | Shanmugarajah et al., |
拟南芥 | AtABCG2 | Shanmugarajah et al., | |
拟南芥 | AtABCG6 | Shanmugarajah et al., | |
拟南芥 | AtABCG20 | Shanmugarajah et al., | |
水稻 | OsRCN1/ABCG5 | Shiono et al., | |
脂质转运蛋白 | 拟南芥 | AtLTPI4 | Deeken et al., |
拟南芥 | AtLTPG15 | Lee and Suh, | |
MYB蛋白 | 拟南芥 | AtMYB41 | Shukla et al., |
拟南芥 | AtMYB107 | Gou et al., | |
拟南芥 | AtMYB9 | Lashbrooke et al., | |
拟南芥 | AtMYB39/SUBERMAN | Cohen et al., | |
拟南芥 | AtMYB53 | Shukla et al., | |
拟南芥 | AtMYB92 | Shukla et al., | |
拟南芥 | AtMYB93 | Shukla et al., | |
拟南芥 | AtMYB70 | Wan et al., |
Figure 3 Schematic diagram of suberization and abiotic stress and biotic stress (modified from Barberon et al., 2016) Under abiotic stress and biotic stress, the suberization of endodermis can be enhanced, thus reducing the damage of abiotic stress and biotic stress to plants.
[1] |
韩雪源, 茅林春 (2017). 木栓质组成成分、组织化学特性及其生物合成研究进展. 植物学报 52, 358-374.
DOI |
[2] |
刘鑫, 王沛, 周青平 (2021). 植物根系质外体屏障研究进展. 植物学报 56, 761-773.
DOI |
[3] |
王璐瑶, 陈謇, 赵守清, 闫慧莉, 许文秀, 刘若溪, 麻密, 虞轶俊, 何振艳 (2022). 水稻镉积累特性的生理和分子机制研究概述. 植物学报 57, 236-249.
DOI |
[4] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 王小东, 梁文君, 李鹏程, 张俊莲, 白江平 (2021). 作物根构型相关基因研究进展及其在马铃薯抗旱种质创新中的应用展望. 植物生理学报 57, 1007-1022. |
[5] | 杨蔚, 罗小燕, 王文强, 严琳玲, 杨虎彪, 董荣书, 徐彬, 胡国富, 刘一明, 刘国道 (2022). 细胞壁在植物抗盐胁迫中的作用. 植物生理学报 58, 501-510. |
[6] | 张妍, 葛颜锐, 赵冉, 胡云涛, 陈羽, 郭亚玉, 林金星, 李瑞丽 (2022). 木栓质的结构组分、生物合成及其功能的研究进展. 科学通报 67, 822-833. |
[7] |
Alassimone J, Naseer S, Geldner N (2010). A develop-mental framework for endodermal differentiation and polarity. Proc Natl Acad Sci USA 107, 5214-5219.
DOI PMID |
[8] |
Andersen TG, Barberon M, Geldner N (2015). Suberiza-tion—the second life of an endodermal cell. Curr Opin Plant Biol 28, 9-15.
DOI PMID |
[9] |
Andersen TG, Naseer S, Ursache R, Wybouw B, Smet W, De Rybel B, Vermeer JEM, Geldner N (2018). Diffusible repression of cytokinin signaling produces endodermal symmetry and passage cells. Nature 555, 529-533.
DOI URL |
[10] | Armand T, Cullen M, Boiziot F, Li LY, Fricke W (2019). Cortex cell hydraulic conductivity, endodermal apoplastic barriers and root hydraulics change in barley (Hordeum vulgare L.) in response to a low supply of N and P. Ann Bot 124, 1091-1107. |
[11] |
Barberon M (2017). The endodermis as a checkpoint for nutrients. New Phytol 213, 1604-1610.
DOI PMID |
[12] |
Barberon M, Vermeer JEM, De Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE, Geldner N (2016). Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164, 447-459.
DOI PMID |
[13] |
Barbosa ICR, Rojas-Murcia N, Geldner N (2019). The Casparian strip—one ring to bring cell biology to lignification? Curr Opin Biotechnol 56, 121-129.
DOI URL |
[14] |
Baxter I, Hosmani PS, Rus A, Lahner B, Borevitz JO, Muthukumar B, Mickelbart MV, Schreiber L, Franke RB, Salt DE (2009). Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet 5, e1000492.
DOI URL |
[15] |
Chen A, Liu T, Deng Y, Xiao R, Zhang T, Wang Y, Yang Y, Lakshmanan P, Shi X, Zhang F, Chen X (2023). Nitrate-dependent suberization regulates cadmium uptake and accumulation in maize. Sci Total Environ 878, 162848.
DOI URL |
[16] |
Chen AL, Husted S, Salt DE, Schjoerring JK, Persson DP (2019). The intensity of manganese deficiency strongly affects root endodermal suberization and ion homeostatsis. Plant Physiol 181, 729-742.
DOI URL |
[17] |
Chen HF, Zhang Q, Lv W, Yu XY, Zhang ZH (2022). Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice. Environ Pollut 302, 119063.
DOI URL |
[18] |
Cheng H, Inyang A, Li CD, Fei J, Zhou YW, Wang YS (2020). Salt tolerance and exclusion in the mangrove plant Avicennia marina in relation to root apoplastic barriers. Ecotoxicology 29, 676-683.
DOI PMID |
[19] |
Cohen H, Fedyuk V, Wang CH, Wu S, Aharoni A (2020). SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. Plant J 102, 431-447.
DOI URL |
[20] |
Cortaga CQ, Sebidos RF (2019). Drought-induced modify-cations on the outer part of the root (OPR) and root endodermis of selected rice genotypes. J Crop Sci Biotechnol 22, 131-138.
DOI |
[21] |
Cui B, Liu RR, Flowers TJ, Song J (2021). Casparian bands and suberin lamellae: key targets for breeding salt tolerant crops? Environ Exp Bot 191, 104600.
DOI URL |
[22] |
de Silva NDG, Murmu J, Chabot D, Hubbard K, Ryser P, Molina I, Rowland O (2021). Root suberin plays important roles in reducing water loss and sodium uptake in Arabidopsis thaliana. Metabolites 11, 735.
DOI URL |
[23] |
Deeken R, Saupe S, Klinkenberg J, Riedel M, Leide J, Hedrich R, Mueller TD (2016). The nonspecific lipid transfer protein AtLtpI-4 is involved in suberin formation of Arabidopsis thaliana crown galls. Plant Physiol 172, 1911-1927.
DOI URL |
[24] |
Doblas VG, Geldner N, Barberon M (2017a). The endodermis, a tightly controlled barrier for nutrients. Curr Opin Plant Biol 39, 136-143.
DOI URL |
[25] |
Doblas VG, Smakowska-Luzan E, Fujita S, Alassimone J, Barberon M, Madalinski M, Belkhadir Y, Geldner N (2017b). Root diffusion barrier control by a vasculaturederived peptide binding to the SGN3 receptor. Science 355, 280-284.
DOI URL |
[26] |
Emonet A, Zhou F, Vacheron J, Heiman CM, Tendon VD, Ma KW, Schulze-Lefert P, Keel C, Geldner N (2021). Spatially restricted immune responses are required for maintaining root meristematic activity upon detection of bacteria. Curr Biol 31, 1012-1028.
DOI URL |
[27] |
Fröschel C, Komorek J, Attard A, Marsell A, Lopez-Arboleda WA, Le Berre J, Wolf E, Geldner N, Waller F, Korte A, Dröge-Laser W (2021). Plant roots employ cell- layer-specific programs to respond to pathogenic and beneficial microbes. Cell Host Microbe 29, 299-310.
DOI URL |
[28] |
Geldner N (2013). The endodermis. Annu Rev Plant Biol 64, 531-558.
DOI PMID |
[29] |
Gou MY, Hou GC, Yang HJ, Zhang XB, Cai YH, Kai GY, Liu CJ (2017). The MYB107 transcription factor positively regulates suberin biosynthesis. Plant Physiol 173, 1045-1058.
DOI PMID |
[30] |
Grünhofer P, Guo YY, Li RL, Lin JX, Schreiber L (2021). Hydroponic cultivation conditions allowing the reproducible investigation of poplar root suberization and water transport. Plant Methods 17, 129.
DOI PMID |
[31] |
Gupta A, Rico-Medina A, Caño-Delgado AI (2020). The physiology of plant responses to drought. Science 368, 266-269.
DOI PMID |
[32] |
Holbein J, Shen DF, Andersen TG (2021). The endodermal passage cell—just another brick in the wall? New Phytol 230, 1321-1328.
DOI PMID |
[33] |
Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE (2013). Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based casparian strip in the root. Proc Natl Acad Sci USA 110, 14498-14503.
DOI PMID |
[34] |
Hsu YF, Yan JW, Song Y, Zheng M (2021). Sarracenia purpurea glycerol-3-phosphate acyltransferase 5 confers plant tolerance to high humidity in Arabidopsis thaliana. Physiol Plant 173, 1221-1229.
DOI URL |
[35] |
Huang L, Li WC, Tam NFY, Ye ZH (2019). Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). J Environ Sci 75, 296-306.
DOI URL |
[36] | Kim G, Ryu H, Sung J (2022). Hormonal crosstalk and root suberization for drought stress tolerance in plants. Biomolecules 12, 811. |
[37] |
Kim YX, Ranathunge K, Lee S, Lee Y, Lee D, Sung J (2018). Composite transport model and water and solute transport across plant roots: an update. Front Plant Sci 9, 193.
DOI PMID |
[38] |
Knipfer T, Danjou M, Vionne C, Fricke W (2021). Salt stress reduces root water uptake in barley (Hordeum vulgare L.) through modification of the transcellular transport path. Plant Cell Environ 44, 458-475.
DOI URL |
[39] |
Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler-Diehl VV, Hochholdinger F, Ranathunge K, Schreiber L (2020a). Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environ 43, 344-357.
DOI URL |
[40] |
Kreszies T, Kreszies V, Ly F, Thangamani PD, Shellak-kutti N, Schreiber L (2020b). Suberized transport barriers in plant roots: the effect of silicon. J Exp Bot 71, 6799-6806.
DOI URL |
[41] |
Kreszies T, Schreiber L, Ranathunge K (2018). Suberized transport barriers in Arabidopsis, barley and rice roots: from the model plant to crop species. J Plant Physiol 227, 75-83.
DOI URL |
[42] |
Kreszies T, Shellakkutti N, Osthoff A, Yu P, Baldauf JA, Zeisler-Diehl VV, Ranathunge K, Hochholdinger F, Schreiber L (2019). Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol 221, 180-194.
DOI PMID |
[43] |
Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK (2009). The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sa-tiva L.). Planta 230, 119-134.
DOI PMID |
[44] |
Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK (2011). Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J Exp Bot 62, 4215-4228.
DOI PMID |
[45] |
Krishnamurthy P, Vishal B, Bhal A, Kumar PP (2021). WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis. Physiol Plant 172, 1673-1687.
DOI PMID |
[46] |
Krishnamurthy P, Vishal B, Ho WJ, Lok FCJ, Lee FSM, Kumar PP (2020). Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance. Plant Physiol 184, 2199-2215.
DOI PMID |
[47] |
Lashbrooke J, Cohen H, Levy-Samocha D, Tzfadia O, Panizel I, Zeisler V, Massalha H, Stern A, Trainotti L, Schreiber L, Costa F, Aharoni A (2016). MYB107 and MYB9 homologs regulate suberin deposition in angiosperms. Plant Cell 28, 2097-2116.
DOI URL |
[48] |
Lee SB, Suh MC (2018). Disruption of glycosylphosphatidy-linositol-anchored lipid transfer protein 15 affects seed coat permeability in Arabidopsis. Plant J 96, 1206-1217.
DOI URL |
[49] |
Líška D, Martinka M, Kohanová J, Lux A (2016). Asymme-trical development of root endodermis and exodermis in reaction to abiotic stresses. Ann Bot 118, 667-674.
DOI URL |
[50] |
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015). Aquaporins in plants. Physiol Rev 95, 1321-1358.
DOI PMID |
[51] |
Melino VJ, Plett DC, Bendre P, Thomsen HC, Zeisler- Diehl VV, Schreiber L, Kronzucker HJ (2021). Nitrogen depletion enhances endodermal suberization without restricting transporter-mediated root NO3- influx. J Plant Physiol 257, 153334.
DOI URL |
[52] |
Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012). Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci USA 109, 10101-10106.
DOI PMID |
[53] |
Pfister A, Barberon M, Alassimone J, Kalmbach L, Lee Y, Vermeer JEM, Yamazaki M, Li GW, Maurel C, Takano J, Kamiya T, Salt DE, Roppolo D, Geldner N (2014). A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. eLife 3, e03115.
DOI URL |
[54] |
Ranathunge K, Schreiber L (2011). Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. J Exp Bot 62, 1961-1974.
DOI PMID |
[55] |
Ranathunge K, Schreiber L, Bi YM, Rothstein SJ (2016). Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta 243, 231-249.
DOI PMID |
[56] |
Ranathunge K, Schreiber L, Franke R (2011). Suberin research in the genomics era—new interest for an old polymer. Plant Sci 180, 399-413.
DOI PMID |
[57] |
Redjala T, Zelko I, Sterckeman T, Legué V, Lux A (2011). Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot 71, 241-248.
DOI URL |
[58] |
Salas-González I, Reyt G, Flis P, Custódio V, Gopaulc-han D, Bakhoum N, Dew TP, Suresh K, Franke RB, Dangl JL, Salt DE, Castrillo G (2021). Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695.
DOI URL |
[59] |
Shanmugarajah K, Linka N, Gräfe K, Smits SHJ, Weber APM, Zeier J, Schmitt L (2019). ABCG1 contributes to suberin formation in Arabidopsis thaliana roots. Sci Rep 9, 11381.
DOI PMID |
[60] |
Shiono K, Ando M, Nishiuchi S, Takahashi H, Watanabe K, Nakamura M, Matsuo Y, Yasuno N, Yamanouchi U, Fujimoto M, Takanashi H, Ranathunge K, Franke RB, Shitan N, Nishizawa NK, Takamure I, Yano M, Tsutsumi N, Schreiber L, Yazaki K, Nakazono M, Kato K (2014). RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant J 80, 40-51.
DOI URL |
[61] |
Shukla V, Barberon M (2021). Building and breaking of a barrier: suberin plasticity and function in the endodermis. Curr Opin Plant Biol 64, 102153.
DOI URL |
[62] | Shukla V, Han JP, Cléard F, Lefebvre-Legendre L, Gully K, Flis P, Berhin A, Andersen TG, Salt DE, Nawrath C, Barberon M (2021). Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transc-a)ription factors. Proc Natl Acad Sci USA 118, e21017301-18. |
[63] |
Tao Q, Jupa R, Liu YK, Luo JP, Li JX, Kováč J, Li B, Li QQ, Wu KR, Liang YC, Lux A, Wang CQ, Li TQ (2019). Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii. Plant Cell Environ 42, 1425-1440.
DOI |
[64] |
Tao Q, Li M, Xu Q, Kováč J, Yuan S, Li B, Li QQ, Huang R, Gao XS, Wang CQ (2022). Radial transport difference mediated by root endodermal barriers contributes to differential cadmium accumulation between japonica and indica subspecies of rice (Oryza sativa L.). J Hazard Mater 425, 128008.
DOI URL |
[65] |
Ursache R, De Jesus Vieira Teixeira C, Tendon VD, Gully K, De Bellis D, Schmid-Siegert E, Andersen TG, Shekhar V, Calderon S, Pradervand S, Nawrath C, Geldner N, Vermeer JEM (2021). GDSL-domain proteins have key roles in suberin polymerization and degradation. Nat Plants 7, 353-364.
DOI PMID |
[66] | Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser MT (2012). Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ Pollut 163, 117-126. |
[67] | Wan JP, Wang RL, Zhang P, Sun LL, Ju Q, Huang HD, Lü SY, Tran LS, Xu J (2021). MYB70 modulates seed germination and root system development in Arabidopsis. iS-cience 24, 103228. |
[68] |
Wang P, Calvo-Polanco M, Reyt G, Barberon M, Cham-peyroux C, Santoni V, Maurel C, Franke RB, Ljung K, Novak O, Geldner N, Boursiac Y, Salt DE (2019). Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Sci Rep 9, 4227.
DOI |
[69] |
Wang P, Wang CM, Gao L, Cui YN, Yang HL, de Silva NDG, Ma Q, Bao AK, Flowers TJ, Rowland O, Wang SM (2020). Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na+influx, K+ efflux and water backflow. Plant Soil 448, 603-620.
DOI |
[70] |
Zhang L, Merlin I, Pascal S, Bert PF, Domergue F, Gam-betta GA (2020). Drought activates MYB41 orthologs and induces suberization of grapevine fine roots. Plant Direct 4, e00278.
DOI URL |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(6): 0-0. |
[2] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[3] | Xuping Tian, Kangjie Yue, Jiali Wang, Huixin Liu, Ziyin Shi, Hongwei Kang. Callus Induction and Plant Regeneration of Dracocephalum rupestre [J]. Chinese Bulletin of Botany, 2024, 59(4): 0-0. |
[4] | QU Ze-Kun, ZHU Li-Qin, JIANG Qi, WANG Xiao-Hong, YAO Xiao-Dong, CAI Shi-Feng, LUO Su-Zhen, sCHEN Guang-Shui. Nutrient foraging strategies of arbuscular mycorrhizal tree species in a subtropical evergreen broadleaf forest and their relationship with fine root morphology [J]. Chin J Plant Ecol, 2024, 48(4): 416-427. |
[5] | Xiao Liu, Wanying Du, Yunxiu Zhang, Chengming Tang, Huawei Li, Haiyong Xia, Shoujin Fan, Ling’an Kong. Nitrate-dependent Alleviation of Root Ammonium Toxicity in Wheat (Triticum aestivum) [J]. Chinese Bulletin of Botany, 2024, 59(3): 397-413. |
[6] | Min Kang, Meiying Zhang, Xiushuang Qi, Ningning Tong, Yang Li, Qingyan Shu, Zheng’an Liu, Changping Lü, Liping Peng. Establishment of a Fast Breeding System for Itoh Hybrid ‘He Xie’ in Tissue Culture [J]. Chinese Bulletin of Botany, 2024, 59(3): 441-451. |
[7] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[8] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[9] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[10] | Jiaxin Chen, Hao Mei, Caixiang Huang, Zongyuan Liang, Yitong Quan, Dongpeng Li, Buweimaieryemu·Saimaiti , Xinxin Li, Hong Liao. A Highly Efficient Method to Generate Chimeric Soybean Plant with Transgenic Hairy Roots [J]. Chinese Bulletin of Botany, 2024, 59(1): 89-98. |
[11] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[12] | Xinyi Zhong, Fan Zhao, Xue Yao, Yuru Wu, Yin Xu, Shunyao Yu, Jingyun Lin, Jianfeng Hao. Relationship between herbaceous plant diversity and soil anti-scourability under different maintenance measures at Sanxingdui City Wall [J]. Biodiv Sci, 2023, 31(8): 23169-. |
[13] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[14] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[15] | HE Fei, LI Chuan, Faisal SHAH, LU Xie-Min, WANG Ying, WANG Meng, RUAN Jia, WEI Meng-Lin, MA Xing-Guang, WANG Zhuo, JIANG Hao. Carbon transport and phosphorus uptake in an intercropping system of Robinia pseudoacacia and Amorphophallus konjac mediated by arbuscular mycorrhizal hyphal networks [J]. Chin J Plant Ecol, 2023, 47(6): 782-791. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||