Chinese Bulletin of Botany ›› 2022, Vol. 57 ›› Issue (4): 500-507.DOI: 10.11983/CBB22017
• TECHNIQUE AND METHOD • Previous Articles Next Articles
Dai Chen, Wang Jin, Lu Yaping()
Received:
2022-01-18
Accepted:
2022-06-23
Online:
2022-07-01
Published:
2022-06-23
Contact:
Lu Yaping
Dai Chen, Wang Jin, Lu Yaping. Determination of Acidic Plant Hormones by Derivative UPLC-MS[J]. Chinese Bulletin of Botany, 2022, 57(4): 500-507.
Analyte | Formula | Ion mode | m·z-1 | RT (min) |
---|---|---|---|---|
ABA | C15H20O4 | [M-H]- | 263.1283 | 7.02 |
GA3 | C19H22O6 | [M-H]- | 345.1338 | 5.52 |
IAA | C10H9NO2 | [M+H]+ | 176.0712 | 6.06 |
JA | C12H18O3 | [M-H]- | 209.1178 | 7.61 |
SA | C7H6O3 | [M-H]- | 137.0239 | 6.19 |
Table 1 Mass spectrometry information of the five acidic plant hormones
Analyte | Formula | Ion mode | m·z-1 | RT (min) |
---|---|---|---|---|
ABA | C15H20O4 | [M-H]- | 263.1283 | 7.02 |
GA3 | C19H22O6 | [M-H]- | 345.1338 | 5.52 |
IAA | C10H9NO2 | [M+H]+ | 176.0712 | 6.06 |
JA | C12H18O3 | [M-H]- | 209.1178 | 7.61 |
SA | C7H6O3 | [M-H]- | 137.0239 | 6.19 |
Analyte | Linear equation | R2 | RSD (%) | LOD (ng∙mL-1) | LOQ (ng∙mL-1) |
---|---|---|---|---|---|
BA | y=23.75x+54.37 | 0.999 | 5.1 | 2 | 5 |
GA3 | y=31.31x+72.43 | 0.999 | 3.7 | 1 | 5 |
IAA | y=21.22x-3.499 | 0.998 | 3.9 | 5 | 10 |
JA | y=27.11x+118.7 | 0.996 | 4.1 | 2 | 5 |
SA | y=33.63x+141.8 | 0.997 | 2.8 | 2 | 5 |
Table 2 Quantitative parameters of the five acidic plant hormones
Analyte | Linear equation | R2 | RSD (%) | LOD (ng∙mL-1) | LOQ (ng∙mL-1) |
---|---|---|---|---|---|
BA | y=23.75x+54.37 | 0.999 | 5.1 | 2 | 5 |
GA3 | y=31.31x+72.43 | 0.999 | 3.7 | 1 | 5 |
IAA | y=21.22x-3.499 | 0.998 | 3.9 | 5 | 10 |
JA | y=27.11x+118.7 | 0.996 | 4.1 | 2 | 5 |
SA | y=33.63x+141.8 | 0.997 | 2.8 | 2 | 5 |
Analyte | Formula | Ion mode | m·z-1 | RT (min) | Responsea | Responseb | Responsec |
---|---|---|---|---|---|---|---|
ABA-BP | C23H26O5 | [M+H]+ | 383.1858 | 8.93 | 2.4e6 | 4.5e5 | 2.5e4 |
GA3-BP | C27H28O7 | [M+H]+ | 465.1913 | 7.62 | 1.76e4 | 2.7e3 | ND |
IAA-BP | C18H15NO3 | [M+H]+ | 294.113 | 8.69 | 5.6e6 | 8.7e5 | 5.6e4 |
JA-BP | C20H24O4 | [M+H]+ | 329.1753 | 9.55 | 1.4e6 | 2.6e5 | 9.8e3 |
SA-BP | C15H12O4 | [M+H]+ | 257.0814 | 7.65 | 9.8e3 | 4.4e3 | ND |
ABA-DMED | C19H30N2O3 | [M+H]+ | 335.2335 | 4.89 | 1.7e7 | 1.6e6 | 1.45e5 |
GA3-DMED | C23H32N2O5 | [M+H]+ | 417.2389 | 4.67 | 9.1e6 | 1.2e6 | 8.8e4 |
IAA-DMED | C14H19N3O | [M+H]+ | 246.1606 | 3.79 | 7.3e6 | 5.9e5 | 3.5e4 |
JA-DMED | C16H28N2O2 | [M+H]+ | 281.2229 | 5.38 | 8.9e6 | 1.1e6 | 7.6e4 |
SA-DMED | C11H16N2O2 | [M+H]+ | 209.1290 | 3.43 | 3.1e5 | 4.0e4 | 9.2e3 |
ABA-EDC | C23H37N3O4 | [M+H]+ | 420.2862 | 6.01 | 1.1e7 | 1.2e6 | 1.8e5 |
GA3-EDC | C27H39N3O6 | [M+H]+ | 502.2917 | 5.14 | 4.0e6 | 4.4e5 | 6.2e4 |
IAA-EDC | C18H26N4O2 | [M+H]+ | 331.2134 | 5.89 | 9.8e6 | 2.6e6 | 3.2e5 |
JA-EDC | C20H35N3O3 | [M+H]+ | 366.2757 | 5.40 | 8.8e6 | 1.2e6 | 2.3e5 |
SA-EDC | C15H23N3O3 | [M+H]+ | 294.1818 | ND | ND | ND | ND |
ABA-BTA | C21H31NO5 | [M+H]+ | 378.228 | 5.82 | 4.0e6 | 5.37e5 | 5.4e4 |
GA3-BTA | C25H33NO7 | [M+H]+ | 460.2335 | 4.87 | 1.3e6 | 1.6e5 | 2.1e4 |
IAA-BTA | C16H20N2O3 | [M+H]+ | 289.1552 | 4.96 | 8.0e5 | 8.5e4 | 1.7e4 |
JA-BTA | C18H29NO4 | [M+H]+ | 324.2175 | 6.40 | 1.2e6 | 7.4e4 | 9.6e3 |
SA-BTA | C13H17NO4 | [M+H]+ | 252.1236 | 4.70 | 4.9e4 | 4.8e3 | ND |
Table 3 Mass spectrometry information of the five acidic plant hormones derived by different agents
Analyte | Formula | Ion mode | m·z-1 | RT (min) | Responsea | Responseb | Responsec |
---|---|---|---|---|---|---|---|
ABA-BP | C23H26O5 | [M+H]+ | 383.1858 | 8.93 | 2.4e6 | 4.5e5 | 2.5e4 |
GA3-BP | C27H28O7 | [M+H]+ | 465.1913 | 7.62 | 1.76e4 | 2.7e3 | ND |
IAA-BP | C18H15NO3 | [M+H]+ | 294.113 | 8.69 | 5.6e6 | 8.7e5 | 5.6e4 |
JA-BP | C20H24O4 | [M+H]+ | 329.1753 | 9.55 | 1.4e6 | 2.6e5 | 9.8e3 |
SA-BP | C15H12O4 | [M+H]+ | 257.0814 | 7.65 | 9.8e3 | 4.4e3 | ND |
ABA-DMED | C19H30N2O3 | [M+H]+ | 335.2335 | 4.89 | 1.7e7 | 1.6e6 | 1.45e5 |
GA3-DMED | C23H32N2O5 | [M+H]+ | 417.2389 | 4.67 | 9.1e6 | 1.2e6 | 8.8e4 |
IAA-DMED | C14H19N3O | [M+H]+ | 246.1606 | 3.79 | 7.3e6 | 5.9e5 | 3.5e4 |
JA-DMED | C16H28N2O2 | [M+H]+ | 281.2229 | 5.38 | 8.9e6 | 1.1e6 | 7.6e4 |
SA-DMED | C11H16N2O2 | [M+H]+ | 209.1290 | 3.43 | 3.1e5 | 4.0e4 | 9.2e3 |
ABA-EDC | C23H37N3O4 | [M+H]+ | 420.2862 | 6.01 | 1.1e7 | 1.2e6 | 1.8e5 |
GA3-EDC | C27H39N3O6 | [M+H]+ | 502.2917 | 5.14 | 4.0e6 | 4.4e5 | 6.2e4 |
IAA-EDC | C18H26N4O2 | [M+H]+ | 331.2134 | 5.89 | 9.8e6 | 2.6e6 | 3.2e5 |
JA-EDC | C20H35N3O3 | [M+H]+ | 366.2757 | 5.40 | 8.8e6 | 1.2e6 | 2.3e5 |
SA-EDC | C15H23N3O3 | [M+H]+ | 294.1818 | ND | ND | ND | ND |
ABA-BTA | C21H31NO5 | [M+H]+ | 378.228 | 5.82 | 4.0e6 | 5.37e5 | 5.4e4 |
GA3-BTA | C25H33NO7 | [M+H]+ | 460.2335 | 4.87 | 1.3e6 | 1.6e5 | 2.1e4 |
IAA-BTA | C16H20N2O3 | [M+H]+ | 289.1552 | 4.96 | 8.0e5 | 8.5e4 | 1.7e4 |
JA-BTA | C18H29NO4 | [M+H]+ | 324.2175 | 6.40 | 1.2e6 | 7.4e4 | 9.6e3 |
SA-BTA | C13H17NO4 | [M+H]+ | 252.1236 | 4.70 | 4.9e4 | 4.8e3 | ND |
The extraction ion and mass spectra chromatograms of the acidic plant hormones reacted with DMED (A), (C), (E), (G) and (I) indicate the extraction ion chromatograms of the acidic plant hormones (ABA、GA3、IAA、JA and SA) reacted with DMED; (B), (D), (F), (H) and (J) indicate the mass spectra chromatograms of the acidic plant hormones (ABA、GA3、IAA、JA and SA) reacted with DMED.
Figure 2 The response of the DMED-derived hormones at different conditions 1: 30°C, 5 min; 2: 30°C, 15 min; 3: 30°C, 30 min; 4: 40°C, 5 min; 5: 40°C, 15 min; 6: 40°C, 30 min; 7: 50°C, 5 min; 8: 50°C, 15 min; 9: 50°C, 30 min; 10: 60°C, 5 min; 11: 60°C, 15 min; 12: 60°C, 30 min
Analyte | Linear equation | R2 | RSD (%) | LOD (ng∙mL-1) | LOQ (ng∙mL-1) |
---|---|---|---|---|---|
ABA | y=2644.2x-229.94 | 0.9992 | 4.5 | 0.02 | 0.05 |
GA3 | y=1945.7x-277.73 | 0.9982 | 4.7 | 0.05 | 0.20 |
IAA | y=458.87x+11.967 | 0.9996 | 3.1 | 0.05 | 0.20 |
JA | y=1031.87x-115.63 | 0.9991 | 3.0 | 0.05 | 0.10 |
SA | y=102.34x+1.856 | 0.9999 | 2.8 | 0.20 | 0.50 |
Table 4 The quantitative parameters of the five acidic plant hormones derived by DMED
Analyte | Linear equation | R2 | RSD (%) | LOD (ng∙mL-1) | LOQ (ng∙mL-1) |
---|---|---|---|---|---|
ABA | y=2644.2x-229.94 | 0.9992 | 4.5 | 0.02 | 0.05 |
GA3 | y=1945.7x-277.73 | 0.9982 | 4.7 | 0.05 | 0.20 |
IAA | y=458.87x+11.967 | 0.9996 | 3.1 | 0.05 | 0.20 |
JA | y=1031.87x-115.63 | 0.9991 | 3.0 | 0.05 | 0.10 |
SA | y=102.34x+1.856 | 0.9999 | 2.8 | 0.20 | 0.50 |
Rice | Wheat | Broad bean | ||||
---|---|---|---|---|---|---|
Root | Leaf | Root | Leaf | Flower | Leaf | |
ABA | 10.4±3.1 | 36.3±4.1 | 8.6±1.7 | 69.8±5.7 | 135.1±10.8 | 44.7±4.9 |
GA3 | 1.9±0.2 | 2.2±0.9 | 4.2±0.8 | 1.8±0.3 | 3.6±1.6 | 1.4±0.4 |
IAA | 43.2±5.3 | 9.2±1.2 | 77.3±6.8 | 17.7±2.2 | 19.2±2.4 | 18.1±9.0 |
JA | 10.6±1.3 | 18.9±1.1 | 100.6±9.1 | 126.8±15.6 | 56.5±6.2 | 39.8±4.3 |
SA | 36316.6±4112.5 | 22394.6±3003.3 | 3597.7±388.3 | 1125.8±215.6 | 76.1±6.2 | 15.4±1.8 |
Table 5 Quantitation of the acidic plant hormones in several plant species (ng∙g-1 FW)
Rice | Wheat | Broad bean | ||||
---|---|---|---|---|---|---|
Root | Leaf | Root | Leaf | Flower | Leaf | |
ABA | 10.4±3.1 | 36.3±4.1 | 8.6±1.7 | 69.8±5.7 | 135.1±10.8 | 44.7±4.9 |
GA3 | 1.9±0.2 | 2.2±0.9 | 4.2±0.8 | 1.8±0.3 | 3.6±1.6 | 1.4±0.4 |
IAA | 43.2±5.3 | 9.2±1.2 | 77.3±6.8 | 17.7±2.2 | 19.2±2.4 | 18.1±9.0 |
JA | 10.6±1.3 | 18.9±1.1 | 100.6±9.1 | 126.8±15.6 | 56.5±6.2 | 39.8±4.3 |
SA | 36316.6±4112.5 | 22394.6±3003.3 | 3597.7±388.3 | 1125.8±215.6 | 76.1±6.2 | 15.4±1.8 |
[1] | 陈鸣銮 (2013). 基于整体柱的微分离分析方法研究及其在酸性植物激素检测中的应用. 博士论文. 武汉: 武汉大学. pp. 36-59. |
[2] | 张晨曦, 卢爱玉, 薛扬睿, 孙崟喆, 江弦, 许风国, 焦宇 (2019). 衍生化HPLC/MS法测定有机羧酸物质的研究进展. 药学研究 38, 657-662. |
[3] |
Barkawi LS, Tam YY, Tillman JA, Normanly J, Cohen JD (2010). A high-throughput method for the quantitative analysis of auxins. Nat Protoc 5, 1609-1618.
DOI PMID |
[4] |
Barkawi LS, Tam YY, Tillman JA, Pederson B, Calio J, Al-Amier H, Emerick M, Normanly J, Cohen JD (2008). A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal Biochem 372, 177-188.
PMID |
[5] |
Du FY, Ruan GH, Liu HW (2012). Erratum to: analytical methods for tracing plant hormones. Anal Bioanal Chem 404, 1615.
DOI URL |
[6] |
Hao YH, Zhang Z, Wang L, Liu C, Lei AW, Yuan BF, Feng YQ (2015). Stable isotope labeling assisted liquid chromatography-electrospray tandem mass spectrometry for quantitative analysis of endogenous gibberellins. Talanta 144, 341-348.
DOI URL |
[7] |
Hedden P (1993). Modern methods for the quantitative analysis of plant hormones. Annu Rev Plant Physiol Plant Mol Biol 44, 107-129.
DOI URL |
[8] | Higashi T, Shibayama Y, Ichikawa T, Ito K, Toyo’Oka T, Shimada K, Mitamura K, Ikegawa S, Chiba H (2010). Salivary chenodeoxycholic acid and its glycine-conjugate: their determination method using LC-MS/MS and variation of their concentrations with increased saliva flow rate. Ste- roids 75, 338-345. |
[9] |
Izumi Y, Okazawa A, Bamba T, Kobayashi A, Fukusaki E (2009). Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nano flow liquid chromatography-electrospray ionization ion trap mass spectrometry. Anal Chim Acta 648, 215-225.
DOI URL |
[10] |
Li DM, Guo ZP, Chen Y (2016). Direct derivatization and quantitation of ultra-trace gibberellins in sub-milligram fresh plant organs. Mol Plant 9, 175-177.
DOI URL |
[11] |
Marquis BJ, Louks HP, Bose C, Wolfe RR, Singh SP (2017). A new derivatization reagent for HPLC-MS analy- sis of biological organic acids. Chromatographia 80, 1723-1732.
DOI PMID |
[12] |
Pan XQ, Wang XM (2009). Profiling of plant hormones by mass spectrometry. J Chromatogr B 877, 2806-2813.
DOI URL |
[13] |
Pan XQ, Welti R, Wang XM (2008). Simultaneous quantifi-cation of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69, 1773-1781.
DOI URL |
[14] |
Qaderi MM, Kurepin LV, Reid DM (2012). Effects of tem-perature and watering regime on growth, gas exchange and abscisic acid content of canola (Brassica napus) seed-lings. Environ Exp Bot 75, 107-113.
DOI URL |
[15] |
Qi BL, Liu P, Wang QY, Cai WJ, Yuan BF, Feng YQ (2014). Derivatization for liquid chromatography-mass spectro- metry. Trends Analyt Chem 59, 121-132.
DOI URL |
[16] |
Santa T (2011). Derivatization reagents in liquid chromato-graphy/electrospray ionization tandem mass spectrome- try. Biomed Chromatogr 25, 1-10.
DOI URL |
[17] |
Santa T, Al-Dirbashi OY, Fukushima T (2007). Derivatiza-tion reagents in liquid chromatography/electrospray ioni-zation tandem mass spectrometry for biomedical analysis. Drug Discov Ther 1, 108-118.
PMID |
[18] |
Santner A, Estelle M (2009). Recent advances and emerging trends in plant hormone signaling. Nature 459, 1071-1078.
DOI URL |
[19] |
Tank JG, Pandya RV, Thaker VS (2014). Phytohormones in regulation of the cell division and endoreduplication process in the plant cell cycle. RSC Adv 4, 12605-12613.
DOI URL |
[20] |
Zhang TY, Sha L, Zhu QF, Wang Q, Hussain D, Feng YQ (2019). Derivatization for liquid chromatography-electrospray ionization-mass spectrometry analysis of small-mo- lecular weight compounds. Trends Analyt Chem 119, 115608.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||