 
	Chinese Bulletin of Botany ›› 2020, Vol. 55 ›› Issue (5): 541-550.DOI: 10.11983/CBB20058 cstr: 32102.14.CBB20058
• INVITED REVIEW • Previous Articles Next Articles
					
													Sijia Li1, Yongxue Zhang1, Mingsheng Jia2, Ying Li1, Shaojun Dai2,*( )
)
												  
						
						
						
					
				
Received:2020-04-05
															
							
															
							
																	Accepted:2020-05-20
															
							
																	Online:2020-09-01
															
							
																	Published:2020-09-03
															
						Contact:
								Shaojun Dai   
													Sijia Li, Yongxue Zhang, Mingsheng Jia, Ying Li, Shaojun Dai. Advances of LORELEI-like Glycosylphosphatidylinositol-anchor (LLG) Proteins in Plants[J]. Chinese Bulletin of Botany, 2020, 55(5): 541-550.
 
																													Figure 1 Arabidopsis LLG amino acid sequences and 3D structure model (A) LLG amino acid sequence (The colored boxes indicate the N-terminal signal peptide, sequence conservative frame, C-terminal conformational flexible region, and C-terminal GPI anchor region, respectively; the triangles, green dots, diamonds and pentagonal stars represent 8 Cys sites that can form 4 pairs of disulfide bonds, and the blue dots represent conservative amino acid sites); (B) The 3D structure of amino acids 46-138 of LLG1 (α-helix, β-sheet, N terminal (46), C terminal (138), and conserved 8 Cys sites formed 4 pairs of disulfide bonds)
 
																													Figure 2 Interaction between different members of the LLG and RLK family proteins regulates pollen and root development and salt and immune response processes (A) LLG2/3 interacts with ANX1/2 and BUPS1/2 to regulate pollen tube growth and burst; (B) LLG1 interacts with FER to regulate root and root hair growth; (C) LLG1 interacts with FER to regulate salt stress response; (D) LLG1 interacts with FLS2 and EFR to regulate the immune response. ABA: Abscisic acid; ABI2: ABA insensitive 2; AGB1: Heterotrimeric G-protein β-subunit; AHA2: Plasma membrane H+-ATPase 2; ANX1/2: ANXUR1/2; BAK1: Brassinosteroid insensitive 1-associated receptor kinase 1; BIK1: Botrytis-induced kinase 1; BUPS1/2: Buddha’s paper seal1/2; ECD: Extracellular domain; EDR1: Enhanced disease resistance 1; EFR: EF-Tu receptor; elf18: 18 amino acid peptide of EF-Tu N-terminus; eXJM: Extracellular membrane domain; FER: FERONIA; flg22: 22 amino acid peptide of bacterial flagellin N-terminus; FLS2: Flagellin sensing 2; GDP: Guanosine diphosphate; GEF1/4/10: Guanine nucleotide exchange factor1/4/10; GTP: Guanosine triphosphate; KD: Kinase domain; LLG1/2/3: LORELEI-like GPI-anchored protein1/2/3; LRR: Leucine-rich repeat; LRX: Leucine-rich repeat extensin-like protein; MAPK: Mitogen-activated protein kinase; MKK: Mitogen-activated protein kinase kinase; MLD: Malectin-like domain; NSCC: Non-selective cation channels; PR1: Pathogenesis-related factor 1; RALF: Rapid alkalinization factor; Rboh: Respiratory burst oxidase homolog; ROP1/11: Rho-related GTPase1/11 from plants; S1P: Site-1 protease; SLAC1: Slow anion channel 1; SnRK2: Serine/threonine-protein kinase SnRK2D; TM: Transmembrane domain. The solid line represents the direct regulation process, the dotted line represents the indirect regulation process or material transport. The arrow represents promotion, and the T represents inhibition.
| [1] | Chen J, Yu F, Liu Y, Du CQ, Li XS, Zhu SR, Wang XC, Lan WZ, Rodriguez PL, Liu XM, Li DP, Chen LB, Luan S  ( 2016). FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsismodification. Proc Natl Acad Sci USA 113, E5519-E5527. DOI URL PMID | 
| [2] | Cheung AY, Li C, Zou YJ, Wu HM  ( 2014). Glycosylphosphatidylinositol anchoring: control through modification. Plant Physiol 166, 748-750. DOI URL PMID | 
| [3] | Deslauriers SD, Larsen PB  ( 2010). FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls. Mol Plant 3, 626-640. URL PMID | 
| [4] | Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN  ( 2008). Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320, 942-945. DOI URL PMID | 
| [5] | Duan QH, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY  ( 2014). Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5, 3129. DOI URL PMID | 
| [6] | Duan QH, Kita D, Li C, Cheung AY, Wu HM  ( 2010). FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107, 17821-17826. DOI URL PMID | 
| [7] | Duan QH, Liu MCJ, Kita D, Jordan SS, Yeh FLJ, Yvon R, Carpenter H, Federico AN, Garcia-Valencia LE, Eyles SJ, Wang CS, Wu HM, Cheung AY  ( 2020). FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579, 561-566. URL PMID | 
| [8] | Feng HQ, Liu C, Fu R, Zhang MM, Li H, Shen LP, Wei QQ, Sun X, Xu L, Ni B, Li C  ( 2019). LORELEI-LIKE GPI- ANCHORED PROTEINS 2/3 regulate pollen tube growth as chaperones and coreceptors for ANXUR/BUPS receptor kinases in  Arabidopsis. Mol Plant 12, 1612-1623. DOI URL PMID | 
| [9] | Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan QH, Liu MC, Maman J, Steinhorst L, Schmitz- Thom I, Yvon R, Kudla J, Wu HM, Cheung AY, Dinneny JR  ( 2018). The FERONIA receptor kinase maintains cell- wall integrity during salt stress through Ca 2+ signaling . Curr Biol 28, 666-675. DOI URL PMID | 
| [10] | Franck CM, Westermann J, Boisson-Dernier A  ( 2018). Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu Rev Plant Biol 69, 301-328. DOI URL PMID | 
| [11] | Frye CA, Tang DZ, Innes RW  ( 2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98, 373-378. DOI URL PMID | 
| [12] | Ge ZX, Bergonci T, Zhao YL, Zou YJ, Du S, Liu MC, Luo XJ, Ruan H, García-Valencia LE, Zhong S, Hou SY, Huang QP, Lai LH, Moura DS, Gu HY, Dong J, Wu HM, Dresselhaus T, Xiao JY, Cheung AY, Qu LJ  ( 2017). Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358, 1596-1600. DOI URL PMID | 
| [13] | Ge ZX, Cheung AY, Qu LJ  ( 2019). Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface. New Phytol 222, 687-693. DOI URL PMID | 
| [14] | Guo HQ, Li L, Ye HX, Yu XF, Algreen A, Yin YH  ( 2009). Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA 106, 7648-7653. DOI URL PMID | 
| [15] | Haruta M, Monshausen G, Gilroy S, Sussman MR  ( 2008). A cytoplasmic Ca 2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide. Biochemistry 47, 6311-6321. DOI URL PMID | 
| [16] | Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR  ( 2014). A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408-411. DOI URL PMID | 
| [17] | Hou YN, Guo XY, Cyprys P, Zhang Y, Bleckmann A, Cai L, Huang QP, Luo Y, Gu HY, Dresselhaus T, Dong J, Qu LJ  ( 2016). Maternal ENODLs are required for pollen tube reception in Arabidopsis. Curr Biol 26, 2343-2350. DOI URL PMID | 
| [18] | Huang GQ, Li E, Ge FR, Li S, Wang Q, Zhang CQ, Zhang Y  ( 2013). Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. New Phytol 200, 1089-1101. DOI URL PMID | 
| [19] | Johnson MA, Harpe JF, Palanivelu R  ( 2019). A fruitful journey: pollen tube navigation from germination to fertilization. Annu Rev Plant Biol 70, 809-837. URL PMID | 
| [20] | José-Estanyol M, Gomis-Rüth FX, Puigdomènech P  ( 2004). The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem 42, 355-365. DOI URL PMID | 
| [21] | Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K  ( 2014). Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26, 1069-1080. DOI URL PMID | 
| [22] | Keinath NF, Kierszniowska S, Lorek J, Bourdais G, Kessler SA, Shimosato-Asano H, Grossniklaus U, Schulze WX, Robatzek S, Panstruga R  ( 2010). PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J Biol Chem 285, 39140-39149. DOI URL PMID | 
| [23] | Li C, Yeh FL, Cheung AY, Duan QH, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L, Jalal M, Kwong A, Carpenter H, Wu HM  ( 2015). Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4, e06587. DOI URL | 
| [24] | Li HJ, Yang WC  ( 2016). RLKs orchestrate the signaling in plant male-female interaction. Sci China Life Sci 59, 867-877. DOI URL PMID | 
| [25] | Li HJ, Yang WC  ( 2018). Ligands switch model for pollen- tube integrity and burst. Trends Plant Sci 23, 369-372. URL PMID | 
| [26] | Li L, Li M, Yu LP, Zhou ZY, Liang XX, Liu ZX, Cai GH, Gao LY, Zhang XJ, Wang YC, Chen S, Zhou JM  ( 2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329-338. DOI URL PMID | 
| [27] | Liu LF, Shangguan KK, Zhang BC, Liu XL, Yan MX, Zhang LJ, Shi YY, Zhang M, Qian Q, Li JY, Zhou YH  ( 2013). Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet 9, e1003704. DOI URL PMID | 
| [28] | Liu XL, Castro C, Wang YB, Noble J, Ponvert N, Bundy M, Hoel C, Shpak E, Palanivelu R  ( 2016). The role of LORELEI in pollen tube reception at the interface of the synergid cell and pollen tube requires the modified eight- cysteine motif and the receptor-like kinase FERONIA. Plant Cell 28, 1035-1052. URL PMID | 
| [29] | Mangano S, Juárez SPD, Estevez JM  ( 2016). ROS regulation of polar growth in plant cells. Plant Physiol 171, 1593-1605. DOI URL PMID | 
| [30] | Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Gagliardini V, Martínez-Ber- nardini A, Fabrice TN, Ringli C, Muschietti JP, Gros- sniklaus U  ( 2017). RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358, 1600-1603. DOI URL PMID | 
| [31] | Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S  ( 2007). Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci USA 104, 20996-21001. DOI URL PMID | 
| [32] | Shen QJ, Bourdais G, Pan HR, Robatzek S, Tang DZ  ( 2017). Arabidopsis glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity. Proc Natl Acad Sci USA 114, 5749-5754. URL PMID | 
| [33] | Shi H, Shen QJ, Qi YP, Yan HJ, Nie HZ, Chen YF, Zhao T, Katagiri F, Tang DZ  ( 2013). BR-SIGNALING KINASE 1 physically associates with FLAGELLIN SENSING 2 and regulates plant innate immunity in Arabidopsis. Plant Cell 25, 1143-1157. DOI URL PMID | 
| [34] | Sun YD, Li L, Macho AP, Han ZF, Hu ZH, Zipfel C, Zhou JM, Chai JJ  ( 2013). Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342, 624-628. DOI URL PMID | 
| [35] | Swanson S, Gilroy S  ( 2010). ROS in plant development. Physiol Plant 138, 384-392. DOI URL PMID | 
| [36] | Xiao Y, Stegmann M, Han ZF, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai JJ  ( 2019). Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572, 270-274. DOI URL PMID | 
| [37] | Xu GY, Chen WJ, Song LM, Chen QS, Zhang H, Liao HD, Zhao GQ, Lin FC, Zhou HN, Yu F  ( 2019). FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the stability of 14-3-3 proteins in response to the carbon/nitrogen ratio. J Exp Bot 70, 6375-6388. DOI URL PMID | 
| [38] | Yang T, Wang L, Li CY, Liu Y, Zhu SR, Qi YY, Liu XM, Lin QL, Luan S, Yu F  ( 2015). Receptor protein kinase FERO-NIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun  465, 77-82. DOI URL PMID | 
| [39] | Yang YQ, Qin YX, Xie CG, Zhao FY, Zhao JF, Liu DF, Chen SY, Fuglsang AT, Palmgren MG, Schumaker KS, Deng XW, Guo Y  ( 2010). The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. Plant Cell 22, 1313-1332. DOI URL PMID | 
| [40] | Yeats TH, Sorek H, Wemmer DE, Somerville CR  ( 2016). Cellulose deficiency is enhanced on hyper accumulation of sucrose by a H+-coupled sucrose symporter. Plant Physiol 171, 110-124. DOI URL PMID | 
| [41] | Yin YL, Qin KZ, Song XW, Zhang QH, Zhou YH, Xia XJ, Yu JQ  ( 2018). BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase- mediated reactive oxygen species signaling in tomato. Plant Cell Physiol 59, 2239-2254. DOI URL PMID | 
| [42] | Yu F, Qian LC, Nibau C, Duan QH, Kita D, Levasseur K, Li XQ, Lu CQ, Li H, Hou CC, Li LG, Buchanan BB, Chen LB, Cheung AY, Li DP, Luan S  ( 2012). FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci USA 109, 14693-14698. DOI URL PMID | 
| [43] | Yu JJ, Li Y, Qin Z, Guo SY, Li YF, Miao YC, Song CP, Chen SX, Dai SJ  ( 2020). Plant chloroplast stress response: insights from thiol redox proteomics. Antioxid Redox Signal 33, 35-57. DOI URL PMID | 
| [44] | Yu SC, Guo ZW, Johnson C, Gu GF, Wu QY  ( 2013). Recent progress in synthetic and biological studies of GPI anchors and GPI-anchored proteins. Curr Opin Chem Biol 17, 1006-1013. DOI URL PMID | 
| [45] | Yu YQ, Assmann SM  ( 2015). The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the  Arabidopsis salinity response. Plant Cell Environ 38, 2143-2156. DOI URL PMID | 
| [46] | Yu YQ, Chakravorty D, Assmann SM  ( 2018). The G protein β-subunit, AGB1, interacts with FERONIA in RALF1- regulated stomatal movement. Plant Physiol 176, 2426-2440. DOI URL PMID | 
| [47] | Zhang WT, Liu J, Zhang YX, Qiu J, Li Y, Zheng BJ, Hu FH, Dai SJ, Huang XH ( 2020). A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance. Sci China Life Sci 63, 1269-1282. | 
| [48] | Zhao CZ, Zayed O, Yu ZP, Jiang W, Zhu PP, Hsu CC, Zhang LR, Tao WA, Lozano-Durán R, Zhu JK  ( 2018). Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci USA 115, 13123-13128. DOI URL PMID | 
| [49] | Zhong S, Qu LJ  ( 2019). Peptide/receptor-like kinase-mediated signaling involved in male-female interactions. Curr Opin Plant Biol 51, 7-14. DOI URL PMID | 
| [50] | Zurzolo C, Simons K  ( 2016). Glycosylphosphatidylinositol-anchored proteins: membrane organization and transport. Biochim Biophys Acta 1858, 632-639. DOI URL PMID | 
| [1] | ZHANG Zi-Rui, Zhou Jing, HU Yan-Ping, Liang Shuang, MA Yong-Peng, CHEN Wei-Le. Root-associated Fungal Communities of the Critically Endangered Plant Pinus Squamata [J]. , 2025, 49(濒危植物的保护与恢复): 0-. | 
| [2] | WANG Xiu-Yuan, SHEN Lei, LIU Ting-Ting, WEI Wen-Wen, ZHANG Shuai, ZHANG Wei. Spatial and temporal distribution of root system and interspecific competition strategy in Malus pumila ‘Saiwaihong’ - Glycine max agroforestry system [J]. Chin J Plant Ecol, 2025, 49(5): 748-759. | 
| [3] | Yuhan Liu, Qijiang Cao, Shihan Zhang, Yihui Li, Jing Wang, Xiaomeng Tan, Xiaoru Liu, Xianling Wang. Mechanism of AtFTCD-L in Root Response to Soil Compaction [J]. Chinese Bulletin of Botany, 2025, 60(4): 1-0. | 
| [4] | LI Meng-Qi, MIAO Ling-Feng, LI Da-Dong, LONG Yi-Fan, YE Bing-Bing, YANG Fan. Response of mangrove fine root functional traits to sediment nutrient changes at different tide levels in Dongzhaigang, Hainan, China [J]. Chin J Plant Ecol, 2025, 49(4): 552-561. | 
| [5] | GUO Li-Qi, YAN Xiao-Lei, CAO Lei, GAO Jing, LIU Rui-Qiang, ZHOU Xu-Hui. Effects of mycorrhizal types and root traits of tree species on rhizosphere microbial network complexity [J]. Chin J Plant Ecol, 2025, 49(4): 573-584. | 
| [6] | WANG Juan, ZHANG Deng-Shan, XIAO Yuan-Ming, PEI Quan-Bang, WANG Bo, FAN Bo, ZHOU Guo-Ying. Relationships between the characteristics of root exudate and environmental factors in the alpine steppe following long-term grazing exclusion [J]. Chin J Plant Ecol, 2025, 49(4): 596-609. | 
| [7] | DU Ying-Jie, FAN Ai-Lian, WANG Xue, YAN Xiao-Jun, CHEN Ting-Ting, JIA Lin-Qiao, JIANG Qi, CHEN Guang-Shui. Coordination and differences in root-leaf functional traits between tree species and understory shrub species in a subtropical natural evergreen broadleaf forest [J]. Chin J Plant Ecol, 2025, 49(4): 585-595. | 
| [8] | Zeng Wendan, Yan Huabing, Wu Zhengdan, Shang Xiaohong, Cao Sheng, Lu Liuying, Xiao Liang, Shi Pingli, Cheng Dong, Long Ziyuan, Li Jieyu. Agrobacterium rhizogenes-mediated Transformation System of Pueraria lobata Hairy Roots [J]. Chinese Bulletin of Botany, 2025, 60(3): 425-434. | 
| [9] | Gu Jingjing, Liu Yizhuo, Su Yang. The functions and challenges of grass-roots local governments in fulfilling the Kunming-Montreal Global Biodiversity Framework—A comparative analysis with the objectives of the United Nations Framework Convention on Climate Change [J]. Biodiv Sci, 2025, 33(3): 24585-. | 
| [10] | ZHENG Lin-Min, XIONG Xiao-Ling, JIANG Yong-Meng, WANG Man, ZHANG Jin-Xiu, ZENG Zhi-Wei, LYU Mao-Kui, XIE Jin-Sheng. Decomposition regularities of leaf litter and fine roots of Cunninghamia lanceolata and their divergent drivers at different altitudes in the Wuyi Mountain [J]. Chin J Plant Ecol, 2025, 49(2): 244-255. | 
| [11] | NIU Yun-Ming, JIA Guo-Dong, WANG Xin, LIU Zi-He. Dynamic changes of transpiration water age and water utilization strategies for trees at different altitudes in Lushan area [J]. Chin J Plant Ecol, 2024, 48(9): 1104-1117. | 
| [12] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. | 
| [13] | CAI Hui-Ying, LIANG Ya-Tao, LOU Hu, YANG Guang, SUN Long. Changes of fine root functional traits and rhizosphere bacterial community of Betula platyphylla after fire [J]. Chin J Plant Ecol, 2024, 48(7): 828-843. | 
| [14] | LONG Ji-Lan, JIANG Zheng, LIU Ding-Qin, MIAO Yu-Xuan, ZHOU Ling-Yan, FENG Ying, PEI Jia-Ning, LIU Rui-Qiang, ZHOU Xu-Hui, FU Yu-Ling. Effects of drought on plant root exudates and associated rhizosphere priming effect: review and prospect [J]. Chin J Plant Ecol, 2024, 48(7): 817-827. | 
| [15] | Yanjun Jing, Rongcheng Lin. Blue Light Receptor CRY2 Transforms into a ‘dark dancer’ [J]. Chinese Bulletin of Botany, 2024, 59(6): 878-882. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||