Chinese Bulletin of Botany ›› 2016, Vol. 51 ›› Issue (3): 396-410.DOI: 10.11983/CBB15093
• SPECIAL TOPICS • Previous Articles
Le Yu1†, Yonghai Liu1†, Weichao Yuan1, Liping Zhou1, Changlian Peng2*
Received:
2015-06-01
Accepted:
2015-11-01
Online:
2016-05-01
Published:
2016-05-24
Contact:
Peng Changlian
About author:
? These authors contributed equally to this paper
Le Yu1, Yonghai Liu, Weichao Yuan, Liping Zhou, Changlian Peng. Recent Advances in the Study of Accumulation of Ascorbic Acid and Its Molecular Mechanism in Plants[J]. Chinese Bulletin of Botany, 2016, 51(3): 396-410.
植物种类 | 抗坏血酸含量(µmol∙g-1 FW) (µmol∙g-1 FW) | 参考文献 | |
---|---|---|---|
蓝细菌 | 20-100 µmol∙L-1 | Tel-Or et al., 1986; Obinger et al., 1998 | |
藻类植物 | 扁浒苔(Ulva compressa) | 0.5 | Shiu and Lee, 2005 |
裂片石莼(Ulva fasciata) | 0.5 | Mellado et al., 2012 | |
苔藓类植物 | 大灰藓(Hypnum plumaeforme) | 0.1-0.6 | Sun et al., 2010 |
绒叶青藓(Brachythecium velutinum) | 0.25-0.5 | Paciolla and Tommasi, 2003 | |
地钱(Marchantia polymorpha) | 0.3 | Paciolla and Tommasi, 2003 | |
高等植物 | 高山圆币草(Soldanella alpine) (叶片) | 30 | Streb et al., 2003 |
拟南芥(Arabidopsis thaliana) (叶片) | 5 | Kotchoni et al., 2009 | |
烟草(Nicotiana tabacum) (叶片) | 0.5-1.2 | Chen et al., 2003 | |
水稻(Oryza sativa) (叶片) | 6 | Yu et al., 2010 | |
小麦(Triticum aestivum) (叶片) | 4-5.5 | Bartoli et al., 2004 | |
玉米(Zea mays) (叶片) | 0.2-0.6 | Chen et al., 2003 | |
水稻(花后3-4周籽粒) | 0.12 | - | |
小麦(花后3-4周籽粒) | 0.7 | Every et al., 2003 | |
葡萄(Vitis vinifera) (果实) | 0.4-1.3 | De Bolt et al., 2006; Melino et al., 2011 | |
苹果(Malus domestica) (果实) | 0.5-1.5 | Davey and Keulemans, 2004 | |
甜橙(Citrus sinensis) (果实) | 3-4.5 | Yang et al., 2011 | |
草莓(Fragaria ananassa) (果实) | 1.5-3.3 | Tulipani et al., 2008 | |
番茄(Solanum lycopersicum) (果实) | 0.5-2 | Stevens et al., 2007 | |
番茄(Solanum pennellii) (果实) | 5 | Stevens et al., 2007 | |
猕猴桃(Actinidia deliciosa) (果实) | 0.6-114 | Li et al., 2010b | |
刺梨(Rosa roxburghii) (果实) | 75 | Ming et al., 2014 | |
卡姆果(Myrciaria dubia) (果实) | 136-170 | Justi et al., 2000 |
Table 1 Differences of ascorbic acid (Asc) accumulation in different plant species and cultivars
植物种类 | 抗坏血酸含量(µmol∙g-1 FW) (µmol∙g-1 FW) | 参考文献 | |
---|---|---|---|
蓝细菌 | 20-100 µmol∙L-1 | Tel-Or et al., 1986; Obinger et al., 1998 | |
藻类植物 | 扁浒苔(Ulva compressa) | 0.5 | Shiu and Lee, 2005 |
裂片石莼(Ulva fasciata) | 0.5 | Mellado et al., 2012 | |
苔藓类植物 | 大灰藓(Hypnum plumaeforme) | 0.1-0.6 | Sun et al., 2010 |
绒叶青藓(Brachythecium velutinum) | 0.25-0.5 | Paciolla and Tommasi, 2003 | |
地钱(Marchantia polymorpha) | 0.3 | Paciolla and Tommasi, 2003 | |
高等植物 | 高山圆币草(Soldanella alpine) (叶片) | 30 | Streb et al., 2003 |
拟南芥(Arabidopsis thaliana) (叶片) | 5 | Kotchoni et al., 2009 | |
烟草(Nicotiana tabacum) (叶片) | 0.5-1.2 | Chen et al., 2003 | |
水稻(Oryza sativa) (叶片) | 6 | Yu et al., 2010 | |
小麦(Triticum aestivum) (叶片) | 4-5.5 | Bartoli et al., 2004 | |
玉米(Zea mays) (叶片) | 0.2-0.6 | Chen et al., 2003 | |
水稻(花后3-4周籽粒) | 0.12 | - | |
小麦(花后3-4周籽粒) | 0.7 | Every et al., 2003 | |
葡萄(Vitis vinifera) (果实) | 0.4-1.3 | De Bolt et al., 2006; Melino et al., 2011 | |
苹果(Malus domestica) (果实) | 0.5-1.5 | Davey and Keulemans, 2004 | |
甜橙(Citrus sinensis) (果实) | 3-4.5 | Yang et al., 2011 | |
草莓(Fragaria ananassa) (果实) | 1.5-3.3 | Tulipani et al., 2008 | |
番茄(Solanum lycopersicum) (果实) | 0.5-2 | Stevens et al., 2007 | |
番茄(Solanum pennellii) (果实) | 5 | Stevens et al., 2007 | |
猕猴桃(Actinidia deliciosa) (果实) | 0.6-114 | Li et al., 2010b | |
刺梨(Rosa roxburghii) (果实) | 75 | Ming et al., 2014 | |
卡姆果(Myrciaria dubia) (果实) | 136-170 | Justi et al., 2000 |
Fig. 1 The main biosynthetic and regeneration pathways of ascorbic acid in higher plants (Cruz-Rus et al., 2011; Gallie, 2013)(1: Glucose-6-phosphate ismerase (PGI); 2: Mannose-6-ismerase (PMI); 3: Phosphomannomutase (PMM); 4: GDP-mannose pyrophosphorylase (GMP); 5: GDP-mannose-3´,5´-epimerase (GME); 6: GGP; 7: GPP; 8: L-galactose dehydrogenase (GalDH); 9: L-galactone-1,4-lactone dehydrogenase (GalLDH); 10: Phosphodiesterase; 11: Sugar phosphatase; 12: L-gulose dehydrogenase (GulDH); 13: L-gulono-1,4-lactone dehydrogenase (GulLDH); 14: D-galacturonate-1-phosphate uridyltransferase, and D-galacturonate-1-phosphate phosphatase (to be confirmed); 15: D-galacturonate reductase (GalUR); 16: Aldono-lactonase; 17: myo-inositol oxygenase (MIOX); 18: D-glucuronate reductase; 19: Aldono-lactonase; 20: Monodehydroascorbate reductase (MDHAR); 21: Ascorbate peroxidase (APX); 22: Ascorbate oxidase (AOX); 23: Dehydroascorbate reductase (DHAR); 24: Glutathione reductase (GR))
超量表达的基因 (基因来源) | 基因产物 | 转化的植物 | Asc上调倍数 (与野生型相比) | 参考文献 |
---|---|---|---|---|
GDP-甘露糖途径关键酶 | ||||
PMM (拟南芥) | 磷酸甘露糖变位酶 | 拟南芥 | 1.25-1.33 | Qian et al., 2007 |
GGP (猕猴桃) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶 | 烟草 | 3 | Laing et al., 2007 |
GGP (猕猴桃) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶 | 拟南芥 | 4 | Bulley et al., 2009 |
GGP和GME (猕猴桃) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶和GDP-甘露糖-3,5- 差向异构酶 | 拟南芥 | 7 | Bulley et al., 2009 |
GGP (马铃薯/番茄/草莓) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶 | 马铃薯/番茄/草莓 | 3/6/2 | Bulley et al., 2012 |
GGP (拟南芥) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶 | 拟南芥 | 2.9 | Zhou et al., 2012 |
GGP和GPP或GalLDH (拟南芥) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶和L-半乳糖-1-磷酸化 酶或L-半乳糖-1,4-内酯脱氢酶 | 拟南芥 | 4.1 | Zhou et al., 2012 |
GalDH (拟南芥) | L-半乳糖脱氢酶 | 烟草 | - | Gatzek et al., 2002 |
GalLDH (水稻) | L-半乳糖-1,4-内酯脱氢酶 | 水稻 | 1.2-1.4 | Liu et al., 2011, 2013 |
D-半乳糖醛酸途径关键酶 | ||||
GalUR (草莓) | D-半乳糖醛酸内酯还原酶 | 拟南芥 | 2-3 | Agius et al., 2003 |
GalUR (草莓) | D-半乳糖醛酸内酯还原酶 | 马铃薯 | 1.6-2 | Hemavathi et al., 2009 |
GalUR (草莓) | D-半乳糖醛酸内酯还原酶 | 番茄(毛状根) | 2.5 | Wevar Oller et al., 2009 |
古洛糖途径与肌醇途径关键酶 | ||||
GLOase (鼠) | L-古洛糖-1,4-内酯氧化酶(脱氢酶) | 生菜/烟草 | 4-7/4-7 | Jain and Nessler, 2000 |
GLOase (鼠) | L-古洛糖-1,4-内酯氧化酶(脱氢酶) | 拟南芥/拟南芥缺失突变体 | 2/3(或恢复) | Radzio et al., 2004 |
GLOase (鼠) | L-古洛糖-1,4-内酯氧化酶(脱氢酶) | 番茄(果实) | 1.5 | Lim et al., 2012 |
Miox4 (拟南芥) | 肌醇加氧酶 | 拟南芥 | 2-3 | Lorence et al., 2004 |
其它相关酶 | ||||
PAP15 (拟南芥) | 紫色酸性磷酸酶15 | 拟南芥 | 2 | Zhang et al., 2008 |
Table 2 Overexpression of key enzymes in main ascorbic acid (Asc) biosynthesis pathways in higher plants
超量表达的基因 (基因来源) | 基因产物 | 转化的植物 | Asc上调倍数 (与野生型相比) | 参考文献 |
---|---|---|---|---|
GDP-甘露糖途径关键酶 | ||||
PMM (拟南芥) | 磷酸甘露糖变位酶 | 拟南芥 | 1.25-1.33 | Qian et al., 2007 |
GGP (猕猴桃) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶 | 烟草 | 3 | Laing et al., 2007 |
GGP (猕猴桃) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶 | 拟南芥 | 4 | Bulley et al., 2009 |
GGP和GME (猕猴桃) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶和GDP-甘露糖-3,5- 差向异构酶 | 拟南芥 | 7 | Bulley et al., 2009 |
GGP (马铃薯/番茄/草莓) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶 | 马铃薯/番茄/草莓 | 3/6/2 | Bulley et al., 2012 |
GGP (拟南芥) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶 | 拟南芥 | 2.9 | Zhou et al., 2012 |
GGP和GPP或GalLDH (拟南芥) | GDP-L-半乳糖磷酸化酶/半乳糖- 鸟苷-转移酶和L-半乳糖-1-磷酸化 酶或L-半乳糖-1,4-内酯脱氢酶 | 拟南芥 | 4.1 | Zhou et al., 2012 |
GalDH (拟南芥) | L-半乳糖脱氢酶 | 烟草 | - | Gatzek et al., 2002 |
GalLDH (水稻) | L-半乳糖-1,4-内酯脱氢酶 | 水稻 | 1.2-1.4 | Liu et al., 2011, 2013 |
D-半乳糖醛酸途径关键酶 | ||||
GalUR (草莓) | D-半乳糖醛酸内酯还原酶 | 拟南芥 | 2-3 | Agius et al., 2003 |
GalUR (草莓) | D-半乳糖醛酸内酯还原酶 | 马铃薯 | 1.6-2 | Hemavathi et al., 2009 |
GalUR (草莓) | D-半乳糖醛酸内酯还原酶 | 番茄(毛状根) | 2.5 | Wevar Oller et al., 2009 |
古洛糖途径与肌醇途径关键酶 | ||||
GLOase (鼠) | L-古洛糖-1,4-内酯氧化酶(脱氢酶) | 生菜/烟草 | 4-7/4-7 | Jain and Nessler, 2000 |
GLOase (鼠) | L-古洛糖-1,4-内酯氧化酶(脱氢酶) | 拟南芥/拟南芥缺失突变体 | 2/3(或恢复) | Radzio et al., 2004 |
GLOase (鼠) | L-古洛糖-1,4-内酯氧化酶(脱氢酶) | 番茄(果实) | 1.5 | Lim et al., 2012 |
Miox4 (拟南芥) | 肌醇加氧酶 | 拟南芥 | 2-3 | Lorence et al., 2004 |
其它相关酶 | ||||
PAP15 (拟南芥) | 紫色酸性磷酸酶15 | 拟南芥 | 2 | Zhang et al., 2008 |
[1] | 侯长明, 李明军, 马锋旺, 梁东, 杜国荣 (2009). 猕猴桃果实发育过程中AsA代谢产物积累及相关酶活性的变化. 园艺学报 36, 1269-1276. |
[2] | 田世平 (2013). 果实成熟和衰老的分子调控机制. 植物学报 48, 481-488. |
[3] | 熊春晖, 许晓光, 卢永恩, 欧阳波, 张余洋, 叶志彪, 李汉霞 (2012). 铅镉复合胁迫下莲藕对铅镉的富集及其生理变化. 园艺学报 9, 2385-2394. |
[4] | 郑小林, 陈燕, 敬国兴, 李昂, 张佳佳, 励建荣 (2011). 草酸处理对杧果采后果实AsA-GSH循环系统的影响. 园艺学报 38, 1633-1640. |
[5] | Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz- Blanco J, Botella MA, Valpuesta V (2003). Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase.Nat Biotechnol 21, 177-181. |
[6] | Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C (2007). Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato.Plant Physiol 145, 1408-1422. |
[7] | Arrigoni O, De Gara L, Tommasi F, Liso R (1992). Chan- ges in the ascorbate system during seed development of Vicia faba L.Plant Physiol 99, 235-238. |
[8] | Badejo AA, Wada K, Gao Y, Maruta T, Sawa Y, Shigeoka S, Ishikawa T (2012). Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway.J Exp Bot 63, 229-239. |
[9] | Balestrini R, Ott T, Guther M, Bonfante P, Udvardi MK, De Tullio MC (2012). Ascorbate oxidase: the unexpected involvement of a ‘wasteful enzyme’ in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi.Plant Physiol Biochem 59, 71-79. |
[10] | Barth C, Gouzd ZA, Steele HP, Imperio RM (2010). A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis. J Exp Bot 61, 379-394. |
[11] | Barth C, Moeder W, Klessig DF, Conklin PL (2004). The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin C-1.Plant Physiol 134, 1784-1792. |
[12] | Bartoli CG, Gomez F, Martinez DE, Guiamet JJ (2004). Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 403, 1663-1669. |
[13] | Belmonte MF, Stasolla C (2009). Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis.Plant Physiol Biochem 47, 904-911. |
[14] | Brummell DA (2006). Cell wall disassembly in ripening fruit.Funct Plant Biol 33, 103-119. |
[15] | Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA (2012). Enhancing ascorbate in fruits and tubers through over-expression of the L-galac- tose pathway gene GDP-L-galactose phosphorylase.Plant Biotechnol J 10, 390-397. |
[16] | Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W (2009). Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis.J Exp Bot 60, 765-778. |
[17] | Carcamo JM, Pedraza A, Borquez-Ojeda O, Zhang B, Sanchez R, Golde DW (2004). Vitamin C is a kinase inhibitor: dehydroascorbic acid inhibits IkBα kinase β.Mol Cell Biol 24, 6645-6652. |
[18] | Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003). Increasing vitamin C content of plants through enhanced ascorbate recycling.Proc Natl Acad Sci USA 100, 3525-3530. |
[19] | Cruz-Rus E, Amaya I, Sanchez-Sevilla JF, Botella MA, Valpuesta V (2011). Regulation of L-ascorbic acid content in strawberry fruits.J Exp Bot 62, 4191-4201. |
[20] | Davey MW, Keulemans J (2004). Determining the potential to breed for enhanced antioxidant status in Malus: mean inter- and intravarietal fruit vitamin C and glutathione contents at harvest and their evolution during storage.J Agr Food Chem 52, 8031-8038. |
[21] | Davey MW, Van Montagu M, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJ, Strain JJ, Favell D, Fletcher J (2000). Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing.J Sci Food Agr 80, 825-860. |
[22] | De Bolt S, Cook DR, Ford CM (2006). L-tartaric acid synthesis from vitamin C in higher plants.Proc Natl Acad Sci USA 103, 5608-5613. |
[23] | De Gara L, De Pinto MC, Arrigoni O (1997). Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination.Physiol Plant 100, 894-900. |
[24] | Dickson KM, Gustafson CB, Young JI, Zuchner S, Wang G (2013). Ascorbate-induced generation of 5-hydroxy- methylcytosine is unaffected by varying levels of iron and 2-oxoglutarate.Biochem Biophys Res Commun 439, 522-527. |
[25] | Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007). Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses.Planta 225, 1255-1264. |
[26] | Every D, Griffin WB, Wilson PE (2003). Ascorbate oxidase, protein disulfide isomerase, ascorbic acid, dehydroascorbic acid and protein levels in developing wheat kernels and their relationship to protein disulfide bond formation.Cereal Chem 80, 35-39. |
[27] | Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, Causse M (2007). Major proteome variations associated with cherry tomato pericarp development and ripening.Plant Physiol 143, 1327-1346. |
[28] | Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008). Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signaling.J Exp Bot 59, 729-737. |
[29] | Foyer CH, Noctor G (2011). Ascorbate and glutathione: the heart of the redox hub.Plant Physiol 155, 2-18. |
[30] | Franceschi VR, Tarlyn NM (2002). L-ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants.Plant Physiol 130, 649-656. |
[31] | Gallie DR (2013). The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth.J Exp Bot 64, 433-443. |
[32] | Garchery C, Gest N, Do PT, Alhagdow M, Baldet P, Rothan C, Massot C, Gautier H, Aarrouf J, Fernie AR, Stevens R (2013). A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water-deficit.Plant Cell Environ 36, 159-175. |
[33] | Gatzek S, Wheeler GL, Smirnoff N (2002). Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis.Plant J 30, 541-553. |
[34] | Gautier H, Massot C, Stevens R, Serino S, Genard M (2009). Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance.Ann Bot-London 103, 495-504. |
[35] | Gest N, Gautier H, Stevens R (2013). Ascorbate as seen through plant evolution: the rise of a successful molecule?J Exp Bot 64, 33-53. |
[36] | Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Petit J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009). GDP-dmannose 3, 5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato.Plant J 60, 499-508. |
[37] | Goo YM, Chun H, Kim TW, Lee CH, Ahn MJ, Bae SC, Cho KJ, Chun JA, Chung CH, Lee SW (2008). Expressional characterization of dehydroascorbate reductase cDNA in transgenic potato plants.J Plant Biol 51, 35-41. |
[38] | Hancock RD, Walker PG, Pont SDA, Marquis N, Vivera S, Gordon SL, Brennan RM, Viola R (2007). L-ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the L-galactose pathway.Funct Plant Biol 34, 1080-1091. |
[39] | Haroldsen VM, Chi-Ham CL, Kulkarni S, Lorence A, Bennett AB (2011). Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato.Plant Physiol Biochem 49, 1244-1249. |
[40] | Hemavathi, Upadhyaya CP, Young KE, Akula N, Kim H, Heung JJ, Oh OM, Aswath CR, Chun SC, Kim DH, Park SW (2009). Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance.Plant Sci 177, 659-667. |
[41] | Jain AK, Nessler CL (2000). Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants.Mol Breed 6, 73-78. |
[42] | Jimenez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M, Mullineaux P (2002). Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening.Planta 214, 751-758. |
[43] | Justi KC, Visentainer JV, Evelazio de Souza N, Matsushita M (2000). Nutritional composition and vitamin C stability in stored camucamu (Myrciaria dubia) pulp.Arch Latinoam Nutr 50, 405-408. |
[44] | Kerchev PI, Pellny TK, Vivancos PD, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier P, Hancock RD, Foyer CH (2011). The transcription factor ABI4 is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.Plant Cell 23, 3319-3334. |
[45] | Kotchoni SO, Larrimore KE, Mukherjee M, Kempinski CF, Barth C (2009). Alterations in the endogenous as- corbic acid content affect flowering time in Arabidopsis.Plant Physiol 149, 803-815. |
[46] | Laing WA, Wright MA, Cooney J, Bulley SM (2007). The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content.Proc Natl Acad Sci USA 104, 9534-9539. |
[47] | Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011). Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tole- rance. Plant Biotechnol J 9, 661-673. |
[48] | Lee SK, Kader AA (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops.Postharvest Biol Technol 20, 207-220. |
[49] | Lee YP, Baek KH, Lee HS, Kwak SS, Bang JW, Kwon SY (2010). Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot 61, 2499-2506. |
[50] | Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010a). Overexpression of chloroplastic monodehydr- oascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139, 421-434. |
[51] | Li M, Ma F, Liang D, Li J, Wang Y (2010b). Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi.PLoS One 5, e14281. |
[52] | Lim MY, Pulla RK, Park JM, Harn CH, Jeong BR (2012). Over-expression of l-gulono-γ-lactone oxidase (GLOase) gene leads to ascorbate accumulation with enhanced ab- iotic stress tolerance in tomato.In Vitro Cell Dev-Pl 48, 453-461. |
[53] | Liu Y, Yu L, Tong J, Ding J, Wang R, Lu Y, Xiao L (2013). Tiller number is altered in the ascorbic acid-deficient rice suppressed for L-galactono-1,4-lactone dehydrogenase.J Plant Physiol 170, 389-396. |
[54] | Liu Y, Yu L, Wang R (2011). Level of ascorbic acid in trans- genic rice for L-galactono-1,4-lactone dehydrogenase overexpressing or suppressed is associated with plant growth and seed set.Acta Physiol Plant 33, 1353-1363. |
[55] | Lorence A, Chevone BI, Mendes P, Nessler CL (2004). Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis.Plant Physiol 134, 1200-1205. |
[56] | Ma G, Zhang L, Setiawan CK, Yamawaki K, Asai T, Nishikawa F, Maezawac S, Satod H, Kanemitsue N, Katoa M (2014). Effect of red and blue led light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in postharvest broccoli.Postharvest Biol Technol 94, 97-103. |
[57] | Massot C, Genard M, Stevens R, Gautier H (2010). Fluctuations in sugar content are not determinant in explaining variations in vitamin C in tomato fruit.Plant Physiol Bioch 48, 751-757. |
[58] | Massot C, Stevens R, Genard M, Longueness JJ, Gautier H (2012). Light affects ascorbate content and ascorbate-relates gene expression in tomato leaves more than in fruits.Planta 235, 153-163. |
[59] | Matamoros MA, Loscos J, Dietz KJ, Aparicio-Tejo PM, Becana M (2010). Function of antioxidant enzymes and metabolites during maturation of pea fruits.J Exp Bot 61, 87-97. |
[60] | Melino VJ, Hayes MA, Soole KL, Ford CM (2011). The role of light in the regulation of ascorbate metabolism during berry development in the cultivated grapevine Vitis vinifera L.J Sci Food Agr 91, 1712-1721. |
[61] | Melino VJ, Soole KL, Ford CM (2009). Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries.BMC Plant Biol 9, 145. |
[62] | Mellado M, Contreras RA, Gonzalez A, Dennett G, Moenne A (2012). Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta).Plant Physiol Bioch 51, 102-108. |
[63] | Ming H, Qiang X, Deng XX (2014). L-ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt).J Plant Physiol 171, 1205-1216. |
[64] | Minor EA, Court BL, Young JI, Wang G (2013). Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcy- tosine.J Biol Chem 288, 13669-13674. |
[65] | Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009). Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways.Proc Natl Acad Sci USA 106, 7762-7767. |
[66] | Nardai G, Braun L, Csala M, Mile V, Csermely P, Benedetti A, Mandl J, Banhegyi G (2001). Protein- disulfide isomerase- and protein thiol-dependent dehydroascorbate reduction and ascorbate accumulation in the lumen of the endoplasmic reticulum.J Biol Chem 276, 8825-8828. |
[67] | Obinger C, Regelsberger G, Pircher A, Strasser G, Peschek GA (1998). Scavenging of superoxide and hydrogen peroxide in blue-green algae (cyanobacteria).Physiol Plant 104, 693-698. |
[68] | Paciolla C, Tommasi F (2003). The ascorbate system in two bryophytes, Brachythecium velutinum and Marchantia polymorpha. Biol Plant 47, 387-393. |
[69] | Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003). Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling.Plant Cell 15, 939-951. |
[70] | Pignocchi C, Kiddle G, Hernandez I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH (2006). Ascorbate oxidase- dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco.Plant Physiol 141, 423-435. |
[71] | Puskas F, Gergely P Jr, Banki K, Perl A (2000). Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C.FASEB J 14, 1352-1361. |
[72] | Qian W, Yu C, Qin H, Liu X, Zhang A, Johansen IE, Wang D (2007). Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J 49, 399-413. |
[73] | Qin A, Shi Q, Yu X (2011). Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes.Mol Biol Rep 38, 1557-1566. |
[74] | Radzio JA, Lorence A, Chevone BI, Nessler CL (2004). L-gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants.Plant Mol Biol 53, 837-844. |
[75] | Ranc N, Munos S, Santoni S, Causse M (2008). A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae).BMC Plant Biol 8, 130. |
[76] | Shaikhali J, Baier M (2010). Ascorbate regulation of 2-Cys peroxiredoxin-A promoter activity is light-dependent.J Plant Physiol 167, 461-467. |
[77] | Shan C, Liang Z, Sun Y, Hao W, Han R (2011). The protein kinase MEK1/2 participates in the regulation of ascorbate and glutathione content by jasmonic acid in Agropyron cristatum leaves.J Plant Physiol 168, 514-518. |
[78] | Shiu CT, Lee TM (2005). Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata.J Exp Bot 56, 2851-2865. |
[79] | Stevens R, Buret M, Duffe P, Garchery C, Baldet P, Rothan C, Causse M (2007). Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations.Plant Physiol 143, 1943-1953. |
[80] | Stevens R, Page D, Gouble B, Garchery C, Zamir D, Cau- sse M (2008). Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress.Plant Cell Environ 31, 1086-1096. |
[81] | Streb P, Aubert S, Gout E, Bligny R (2003). Reversibility of cold- and light-stress tolerance and accompanying chan- ges of metabolite and antioxidant levels in the two high mountain plant species Soldanella alpine and Ranunculus glacialis.J Exp Bot 54, 405-418. |
[82] | Sun SQ, He M, Cao T, Yusuyin Y, Han W, Li JL (2010). Antioxidative responses related to H2O2 depletion in Hyp- num plumaeforme under the combined stress induced by Pb and Ni.Environ Monit Assess 163, 303-312. |
[83] | Suza WP, Avila CA, Carruthers K, Kulkarni S, Goggin FL, Lorence A (2010). Exploring the impact of wounding and jasmonates on ascorbate metabolism. Plant Physiol Bioch 48, 337-350. |
[84] | Tabata K, Ôba K, Suzuki K, Esaka M (2001). Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1, 4-lactone dehydrogenase.Plant J 27, 139-148. |
[85] | Tel-Or E, Huflejt ME, Packer L (1986). Hydroperoxide metabolism in cyanobacteria.Arch Biochem Biophys 246, 396-402. |
[86] | Tian SP, Qin GZ, Li BQ (2013). Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity.Plant Mol Biol 82, 593-602. |
[87] | Tokunaga T, Miyahara K, Tabata K, Esaka M (2005). Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for L- galactono-1,4-lactone dehydrogenase. Planta 220, 854-863. |
[88] | Tommasi F, Paciolla C, Arrigoni O (1999). The ascorbate system in recalcitrant and orthodox seeds.Physiol Plant 105, 193-198. |
[89] | Tommasi F, Paciolla C, de Pinto MC, De Gara L (2006). Effects of storage temperature on viability, germination and antioxidant metabolism in Ginkgo biloba L. seeds.Plant Physiol Bioch 44, 359-368. |
[90] | Tulipani S, Mezzetti B, Capocasa F, Bompadre S, Beekwilder J, Ric De Vos CH, Capanoglu E, Bovy A, Battino M (2008). Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes.J Agr Food Chem 56, 696-704. |
[91] | Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006). Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress.J Plant Physiol 163, 1179-1184. |
[92] | Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010). Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis.J Integr Plant Biol 52, 400-409. |
[93] | Wevar Oller AL, Agostini E, Milrad SR, Medina MI (2009).In situ and de novo biosynthesis of vitamin C in wild type and transgenic tomato hairy roots: a precursor feeding study.Plant Sci 177, 28-34. |
[94] | Wheeler GL, Jones MA, Smirnoff N (1998). The biosynthetic pathway of vitamin C in higher plants.Nature 393, 365-369. |
[95] | Wolucka BA, Goossens A, Inze D (2005). Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions.J Exp Bot 56, 2527-2538. |
[96] | Wolucka BA, Van Montagu M (2003). GDP-mannose 3´,5´-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants.J Biol Chem 278, 47483-47490. |
[97] | Yang X, Xie J, Wang F, Zhong J, Liu Y, Li G, Peng S (2011). Comparison of ascorbate metabolism in fruits of two citrus species with obvious difference in ascorbate content in pulp.J Plant Physiol 168, 2196-2205. |
[98] | Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R, Shi L, Jia L, Zhang J (2012). Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds.J Exp Bot 63, 1809-1822. |
[99] | Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010). Overexpression of dehydroascorbate reductase, but not monodehydroas- corbate reductase, confers tolerance to aluminum stress in transgenic tobacco.Planta 231, 609-621. |
[100] | Yu L, Jiang J, Zhang C, Jiang L, Ye N, Lu Y, Yang G, Liu E, Peng C, He Z, Peng X (2010). Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice.J Exp Bot 61, 1625-1634. |
[101] | Yu L, Liu Y, Tong J, Ding J, Wang R, Peng C, Xiao L (2015). Reduced grain chalkiness and its possible phy- siological mechanism in transgenic rice overexpressing L-GalLDH.Crop J 2, 125-134. |
[102] | Zhang CJ, Liu JX, Zhang YY, Cai XF, Gong PJ, Zhang JH, Wang TT, Li HX, Ye ZB (2011). Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato.Plant Cell Rep 30, 389-398. |
[103] | Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008). An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate.Plant Physiol 146, 431-440. |
[104] | Zhang W, Lorence A, Gruszewski HA, Chevone BI, Nessler CL (2009). AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/ l- galactose ascorbic acid biosynthetic pathway.Plant Phy- siol 150, 942-950. |
[105] | Zhang Z, Wang J, Zhang R, Huang R (2012). ERF protein AtERF98 enhances tolerance to salt through the trans- criptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71, 273-287. |
[106] | Zheng XL, Tian SP, Gidley MJ, Yue H, Li BQ (2007). Effects of exogenous oxalic acid on ripening and decay incidence in mango fruit during storage at room temperature.Postharvest Biol Technol 45, 281-284. |
[107] | Zhou Y, Tao QC, Wang ZN, Fan R, Li Y, Sun XF, Tang KX (2012). Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation.Biol Plant 56, 451-457. |
[108] | Zito E, Hansen HG, Yeo GS, Fujii J, Ron D (2012). Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice.Mol Cell 48, 39-51. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||