以野蔷薇(Rosa multiflora)当年生带芽茎段为试材, 建立了野蔷薇组培快繁体系。结果表明, 最佳外植体是带腋芽的茎段, 外植体最佳消毒方法是以75%的乙醇浸泡30秒, 再以10%的次氯酸钠溶液浸泡20分钟, 成活率可达96%左右; 带芽茎段萌芽最佳诱导培养基为MS+1.0 mg∙L–1 6-BA+0.01 mg∙L–1 NAA+0.1 mg∙L–1 GA3, 培养30天, 萌芽率可达98%左右; 无菌苗增殖最佳基础培养基为WPM, 增殖系数为2.87; 无菌苗生根最佳培养基为1/2MS+1.0 mg∙L–1 6-BA+0.1 mg∙L–1 NAA, 生根率可达93%左右; 无菌苗移栽成活率达到98%。在此基础上, 以野蔷薇无菌苗为受体, 建立了野蔷薇瞬时表达体系。结果表明, 瞬时表达最佳转化条件是菌液OD600为0.8, 负压为–0.10 MPa, 真空抽吸2次, 每次15分钟, 瞬时表达效率可达96%左右。研究结果为建立野蔷薇再生及遗传转化体系奠定了基础, 也为鉴定蔷薇属植物的基因功能提供了技术支持。
A tissue culture rapid propagation system of Rosa multiflora was established using the stem segments with buds of the current-year as the experimental material. The results showed that the best explants were stem segments with axillary buds. The best disinfection method was to soak the explants in 75% ethanol for 30 seconds, and then soak them in 10% sodium hypochlorite solution for 20 minutes. The survival rate can reach around 96%. The optimal germination induction medium was MS+1.0 mg∙L–1 6-BA+0.01 mg∙L–1 NAA+0.1 mg∙L–1 GA3. The germination rate can reach around 98% after 30 days of cultivation. WPM was the best basal medium for the proliferation of sterile seedlings, and the proliferation coefficient was 2.87. The best medium for rooting was 1/2MS+1.0 mg∙L–1 6-BA+0.1 mg∙L–1 NAA, and the rooting rate can reach around 93%. The transplanting survival rate of sterile seedlings was 98%. On this basis, the transient expression system of Rosa Multiflora was established. The results showed that the optimal transformation conditions for transient expression were OD600 of 0.8, vacuum negative pressure of –0.10 MPa and vacuum suction twice for 15min each time. The transient expression efficiency can reach around 96%. The results of this study laid a foundation for the establishment of regeneration and genetic transformation system of Rosa multiflora, and also provided technical support for identifying the gene function of Rosa plants.
[1]丁萌(2013).野蔷薇再生体系的建立及其遗传转化的研究. 硕士论文. 武汉: 华中农业大学. pp. 14-38.., :14-38.
[2]龚维红(2022).大马士革玫瑰组培与快繁技术研究.安徽农学通报, 28:19-21.
[3]李玲, 顾恒, 岳远征, 杨秀莲, 王良桂(2020).木本植物瞬时转化体系的研究进展.分子植物育种, 18:7784-7794.
[4]鲁艺, 史文君, 黄淑丹, 肖明(2022).苦水玫瑰组培快繁技术研究.青海大学学报, 40:41-46.
[5]廖晶晶, 牛聪聪, 解群杰, 邢巧娟, 齐红岩(2017).基因瞬时表达技术在园艺植物上的应用研究进展.园艺学报, 44:1796-1810.
[6]李刚, 宋平丽, 王翔, 马青翠, 张海霞, 张玉星, 许建锋, 元宝秀(2021).农杆菌介导的杜梨叶片瞬时转化方法的建立.果树学报, 38:2006-2013.
[7]刘亚娟, 杨小艳, 谢树章, 吴红, 高立均(2018).芳纯月季组培快繁技术研究.西南师范大学学报自然科学版, 43:52-56.
[8]李佳慧, 叶维雁, 朱鹏锦, 庞新华, 张继, 唐毓玮, 韦俏宇(2022).猫须草无菌短枝组织培养与快速繁殖体系的建立.热带作物学报, 43:2063-2070.
[9]李心悦, 张克闯, 张道远, 李进, 王玉成(2018).新疆野苹果瞬时遗传转化方法建立及初步验证.分子植物育种, 16:7315-7321.
[10]李晓亮, 张军云, 张钟, 董春富, 杨世先, 王文智, 张建康, 张翠萍(2017).滇红食用玫瑰生根培养基的试验筛选研究.西南农业学报, 30:656-663.
[11]穆建鑫(2021).‘中梨一号’梨再生体系建立及秋子梨遗传转化体系探索. 硕士论文. 南京: 南京农业大学. pp. 13-24.., :13-24.
[12]彭奎莉, 孟繁博, 周志达, 郑关任, 张金柱, 杨涛, 车代弟(2018).不同基因型丰花月季快繁体系差异的研究.中国观赏园艺研究进展, 2018:480-486.
[13]强泽宇(2015).中华金叶榆繁殖技术研究. 硕士论文. 保定: 河北农业大学. pp. 6-12.., :6-12.
[14]任菲宏, 王姣, 李晓松, 石丽姝, 任红艳, 吴茂宏(2023).外植体取样时间和消毒方式对沙子空心李诱导培养的影响.现代农业科技, :77-79.
[15]宋常美, 文晓鹏(2015).种贵州樱桃的高效离体再生.西南大学学报自然科学版, 37:19-24.
[16]王悦, 吴艳菊, 孟大伟, 郎晨婧, 赖薪宇, 刘佳, 葛禹凡, 杨丽萍(2020).植物瞬时表达体系真空侵染法的优化.分子植物育种, 18:6743-6748.
[17]徐立军, 李志斌, 蒋淑磊, 李振勤(2015).大马士革玫瑰组织培养技术研究.河北林业科技, :19-21.
[18]闫允青, 姜桦韬, 谷超, 吴俊(2017).雪花梨’扩繁和叶片再生体系的建立.南京农业大学学报, 40:68-75.
[19]张燕红, 黄乐平, 周小云, 王冬梅(2008).农杆菌真空渗透法转化棉花花粉的初步研究.棉花学报, :354-358.
[20]赵月玲, 王汉海, 程贯召, 杜延飞(2001).枣组织培养中外植体取材部位的比较研究.潍坊学院学报, :53-54.
[21]周玉洁, 韦雪芬, 申长青, 李焜钊, 孙朝辉, 黄久香(2019).濒危植物四药门花的组培快繁.植物生理学报, 55:635-641.
[22]Lu J, Bai M, Ren H, Liu J, Wang C(2017).An efficient transient expression system for gene function analysis in rose.. Plant Methods, 13:116-.
[23]Nakamura N, Hirakawa H, Sato S, Otagaki S, Matsumoto S, Tabata S, Tanaka Y(2018).Genome structur e ofRosa multiflora,a wild ancestor of cultivated roses.DNA Research, 25:113-121.
[24]Yang LP, Xu YN, Liu YQ, Meng DW, Jin TC(2016).Transient expression of foreign protein in tobacco plants by using root vaccum inoculation.Molecular Plant Breeding, 14:3385-3389.
[25]Zhang Y, Zhao MJ, Zhu W, Shi CM, Bao MZ, Zhang W(2021).Non-glandular prickle formation is associated with development and secondary metabolism-related genes in Rosa multiflora.Physiologia plantarum, 173:1147-1162.