[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]单细胞转录组学在植物生长发育及胁迫响应中的应用进展
收稿日期: 2024-03-29
录用日期: 2024-07-23
网络出版日期: 2024-08-19
基金资助
国家自然科学基金(32360402);内蒙古自治区高等学校科学研究项目(B20231093Z)
Advances in the Application of Single-cell Transcriptomics in Plant Growth, Development and Stress Response
Received date: 2024-03-29
Accepted date: 2024-07-23
Online published: 2024-08-19
单细胞转录组学将时空分辨率从多细胞水平转移到单细胞水平, 该技术的快速发展能够更好地揭示新的稀有细胞类型、挖掘细胞间异质性并绘制细胞发育轨迹图。目前, 单细胞转录组学已广泛应用于植物生长发育、应激反应和环境适应等不同研究方向, 有助于更精确、全面地揭示植物生命过程中的分子调控机制。然而, 单细胞转录组学在不同植物中的研究及应用仍面临诸多挑战。该文比较和评估了不同类型的单细胞转录组技术及其流程, 总结了近年来单细胞转录组学在多种植物中的相关研究进展, 并探索了新型单细胞分析工具, 可为以高精度和高动态探究植物生物学的研究人员提供技术支持。最后, 提出了使用单细胞转录组学技术解决植物研究和育种中的一些关键问题、面临的挑战以及未来的发展方向。
关键词: 植物生长发育; 胁迫响应; 单细胞转录组测序; 10× Genomics; 细胞类型
王亚萍 , 包文泉 , 白玉娥 . 单细胞转录组学在植物生长发育及胁迫响应中的应用进展[J]. 植物学报, 2025 , 60(1) : 101 -113 . DOI: 10.11983/CBB24048
Single-cell transcriptomics has improved the spatiotemporal resolution from multi-cell to single-cell levels, and notable progress in this technique has facilitated the identification of new rare cell types, exploration of intercellular heterogeneity, and mapping of cell developmental trajectories. Single-cell transcriptomics is currently being widely used in various research fields such as plant growth and development, stress response, and environmental adaptability, which helps to more thoroughly and precisely uncover the molecular regulatory mechanisms underlying plant life processes. However, there are numerous challenges associated with the study and analysis of different plant species. In this review, we compare and evaluate various single-cell transcription techniques and processes, summarize plant single-cell studies in recent years, and explore new single-cell analysis tools to support researchers studying plant biology with high precision and dynamics. In addition, we propose future directions in using single-cell transcriptomics technologies to address some of the key challenges in plant research and breeding. Furthermore, some important methods for addressing plant research and breeding with single-cell transcriptomics are discussed, along with their difficulties and potential applications.
[1] | Bai YB, Liu H, Lyu HM, Su LY, Xiong JS, Cheng ZM (2022). Development of a single-cell atlas for woodland strawberry (Fragaria vesca) leaves during early Botrytis cinerea infection using single-cell RNA-seq. Hortic Res 9, uhab055. |
[2] | Bezrutczyk M, Z?llner NR, Kruse CPS, Hartwig T, Lautwein T, K?hrer K, Frommer WB, Kim JY (2021). Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves. Plant Cell 33, 531-547. |
[3] | Cai PF (2022). Study on Immune Features of Cytokine Storm in COVID-19 Patients by Single-Cell Transcriptomics and Bioinformatics. PhD dissertation. Hefei: University of Science and Technology of China. pp. 35-59. (in Chinese) |
蔡鹏飞 (2022). 新冠肺炎患者炎症风暴免疫学特征的单细胞转录组和生物信息学研究. 博士论文. 合肥: 中国科学技术大学. pp. 35-59. | |
[4] | Cao YY, Ma J, Han SB, Hou MW, Wei X, Zhang XR, Zhang ZJ, Sun SL, Ku LX, Tang JH, Dong ZY, Zhu ZD, Wang XM, Zhou XX, Zhang LL, Li XD, Long Y, Wan XY, Duan CX (2023). Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots. Plant Biotechnol J 21, 1839-1859. |
[5] | Cervantes-Pérez SA, Zogli P, Thibivilliers S, Tennant S, Hossain S, Xu HP, Meyer I, Nooka A, Venkata Subramanyam SSM, Ma PC, Yao QM, Naldrett M, Smith B, Bhattacharya S, Kl?ver J, Libault M (2023). Single-cell resolution transcriptome atlases of soybean root organs reveal new regulatory programs controlling the nodulation process. Res Square https://doi.org/10.21203/rs.3.rs-2833917/v1 |
[6] | Chen G, Ning BT, Shi TL (2019). Single-cell RNA-seq technologies and related computational data analysis. Front Genet 10, 317. |
[7] | Chen Y, Tong SF, Jiang YZ, Ai FD, Feng YL, Zhang JL, Gong J, Qin JJ, Zhang YY, Zhu YY, Liu JQ, Ma T (2021). Transcriptional landscape of highly lignified poplar stems at single-cell resolution. Genome Biol 22, 319. |
[8] | Chen ZJ, Ye LQ, Zhu MY, Xia C, Fan JF, Chen HB, Li ZJ, Mou S (2024). Single cell multi-omics of fibrotic kidney reveal epigenetic regulation of antioxidation and apoptosis within proximal tubule. Cell Mol Life Sci 81, 56. |
[9] | Cheng ZC, Mu CH, Li XY, Cheng WL, Cai MM, Wu CY, Jiang JT, Fang H, Bai YC, Zheng HF, Geng RM, Xu JL, Xie YL, Dou YP, Li J, Mu SH, Gao J (2023). Single-cell transcriptome atlas reveals spatiotemporal developmental trajectories in the basal roots of moso bamboo (Phyllostachys edulis). Hortic Res 10, uhad122. |
[10] | Coate JE, Farmer AD, Schiefelbein JW, Doyle JJ (2020). Expression partitioning of duplicate genes at single cell resolution in Arabidopsis roots. Front Genet 11, 596150. |
[11] | Cole B, Bergmann D, Blaby-Haas CE, Blaby IK, Bouchard KE, Brady SM, Ciobanu D, Coleman-Derr D, Leiboff S, Mortimer JC, Nobori T, Rhee SY, Schmutz J, Simmons BA, Singh AK, Sinha N, Vogel JP, O’Malley RC, Visel A, Dickel DE (2021). Plant single-cell solutions for energy and the environment. Commun Biol 4, 962. |
[12] | Denyer T, Ma XL, Klesen S, Scacchi E, Nieselt K, Timmermans MCP (2019). Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high- throughput single-cell RNA sequencing. Dev Cell 48, 840-852. |
[13] | Ding YH, Gao W, Qin Y, Li XP, Zhang ZN, Lai WJ, Yang Y, Guo K, Li P, Zhou SH, Hu HY (2023). Single-cell RNA landscape of the special fiber initiation process in Bombax ceiba. Plant Commun 4, 100554. |
[14] | Dorrity MW, Alexandre CM, Hamm MO, Vigil AL, Fields S, Queitsch C, Cuperus JT (2021). The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat Commun 12, 3334. |
[15] | Du J, Wang YC, Chen WF, Xu ML, Zhou RH, Shou HX, Chen J (2023). High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem. Mol Plant 16, 809-828. |
[16] | Efroni I, Mello A, Nawy T, Ip PL, Rahni R, DelRose N, Powers A, Satija R, Birnbaum KD (2016). Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165, 1721-1733. |
[17] | Gala HP, Lanctot A, Jean-Baptiste K, Guiziou S, Chu JC, Zemke JE, George W, Queitsch C, Cuperus JT, Nemhauser JL (2021). A single-cell view of the transcriptome during lateral root initiation in Arabidopsis thaliana. Plant Cell 33,2197-2220. |
[18] | Guo XL (2021). Bulk RNA-Seq of Leafy Head and Single-Cell Transcriptome Analysis of Leaf in Brassica rapa. PhD dissertation. Beijing: Chinese Academy of Agricultural Sciences. pp. 17-61. (in Chinese) |
郭新磊 (2021). 大白菜叶球转录组及叶片单细胞转录组研究. 博士论文. 北京: 中国农业科学院. pp. 17-61. | |
[19] | Hou ZM, Liu YH, Zhang M, Zhao LH, Jin XY, Liu LP, Su ZX, Cai HY, Qin Y (2021). High-throughput single-cell transcriptomics reveals the female germline differentiation trajectory in Arabidopsis thaliana. Commun Biol 4, 1149. |
[20] | Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, Bubb KL, Trapnell C, Fields S, Queitsch C, Cuperus JT (2019). Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell 31, 993-1011. |
[21] | Kim JY, Symeonidi E, Pang TY, Denyer T, Weidauer D, Bezrutczyk M, Miras M, Z?llner N, Hartwig T, Wudick MM, Lercher M, Chen LQ, Timmermans MCP, Frommer WB (2021). Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Plant Cell 33, 511-530. |
[22] | Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015). Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201. |
[23] | Kubo M, Nishiyama T, Tamada Y, Sano R, Ishikawa M, Murata T, Imai A, Lang D, Demura T, Reski R, Hasebe M (2019). Single-cell transcriptome analysis of Phy- scomitrella leaf cells during reprogramming using microcapillary manipulation. Nucleic Acids Res 47, 4539-4553. |
[24] | Li CX, Zhang SY, Yan XY, Cheng P, Yu H (2023a). Single-nucleus sequencing deciphers developmental trajectories in rice pistils. Dev Cell 58, 694-708. |
[25] | Li H, Dai XR, Huang X, Xu MX, Wang Q, Yan XJ, Sederoff RR, Li QZ (2021). Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. J Integr Plant Biol 63, 1906-1921. |
[26] | Li RH, Wang ZF, Wang JW, Li LG (2023b). Combining single-cell RNA sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees. Plant Commun 4, 100665. |
[27] | Li XH, Zhang XB, Gao S, Cui FQ, Chen WW, Fan LN, Qi YW (2022). Single-cell RNA sequencing reveals the landscape of maize root tips and assists in identification of cell type-specific nitrate-response genes. Crop J 10, 1589-1600. |
[28] | Li Y, Sun C (2021). Research progress in single-cell RNA- Seq of plant. Biotechnol Bull 37, 60-66. (in Chinese) |
李益, 孙超 (2021). 植物单细胞转录组测序研究进展. 生物技术通报 37, 60-66. | |
[29] | Liang XY, Ma Z, Ke YH, Wang JL, Wang LF, Qin B, Tang CR, Liu MY, Xian XM, Yang Y, Wang M, Zhang Y (2023). Single-cell transcriptomic analyses reveal cellular and molecular patterns of rubber tree response to early powdery mildew infection. Plant Cell Environ 46, 2222-2237. |
[30] | Liu GY, Li J, Li JM, Chen ZY, Yuan PS, Chen RY, Yin RL, Liao ZT, Li XY, Gu Y, Sun HX, Xia KK (2022). Single-cell transcriptome reveals the redifferentiation trajectories of the early stage of de novo shoot regeneration in Arabidopsis thaliana. bioRxiv https://doi.org/10.1101/2022.01.01.474510. |
[31] | Liu H, Hu DX, Du PX, Wang LP, Liang XQ, Li HF, Lu Q, Li SX, Liu HY, Chen XP, Varshney RK, Hong YB (2021a). Single-cell RNA-seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut (Arachis hypogaea L.). Plant Biotechnol J 19, 2261-2276. |
[32] | Liu Q, Liang Z, Feng D, Jiang SJ, Wang YF, Du ZY, Li RX, Hu GH, Zhang PX, Ma YF, Lohmann JU, Gu XF (2021b). Transcriptional landscape of rice roots at the single-cell resolution. Mol Plant 14, 384-394. |
[33] | Liu ZJ, Kong XY, Long YP, Liu SR, Zhang H, Jia JB, Cui WH, Zhang ZM, Song XW, Qiu LJ, Zhai JX, Yan Z (2023). Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. Nat Plants 9, 515-524. |
[34] | Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214. |
[35] | Niu YL, Bai SL, Wang QY, Liu LY (2017). Applications of single-cell technologies in guard cells. Chin Bull Bot 52, 788-796. (in Chinese) |
牛艳丽, 柏胜龙, 王麒云, 刘凌云 (2017). 单细胞组学技术及其在植物保卫细胞研究中的应用. 植物学报 52, 788-796. | |
[36] | Ogura N, Sasagawa Y, Ito T, Tameshige T, Kawai S, Sano M, Doll Y, Iwase A, Kawamura A, Suzuki T, Nikaido I, Sugimoto K, Ikeuchi M (2023). WUSCHEL-RELATED HOMEOBOX 13 suppresses de novo shoot regeneration via cell fate control of pluripotent callus. Sci Adv 9, eadg6983. |
[37] | Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, Efroni I (2022). A conserved superlocus regulates above- and belowground root initiation. Science 375, eabf4368. |
[38] | Qiu XJ, Hill A, Packer J, Lin DJ, Ma YA, Trapnell C (2017). Single-cell mRNA quantification and differential analysis with Census. Nat Methods 14, 309-315. |
[39] | Rhee SY, Birnbaum KD, Ehrhardt DW (2019). Towards building a plant cell atlas. Trends Plant Sci 24, 303-310. |
[40] | Ryu KH, Huang L, Kang HM, Schiefelbein J (2019). Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol 179, 1444-1456. |
[41] | Shahan R, Hsu CW, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, Afanassiev A, Vlot AHC, Schiebinger G, Benfey PN, Ohler U (2022). A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev Cell 57, 543-560. |
[42] | Shaw R, Tian X, Xu J (2021). Single-cell transcriptome analysis in plants: advances and challenges. Mol Plant 14, 115-126. |
[43] | Shulse CN, Cole BJ, Ciobanu D, Lin JY, Yoshinaga Y, Gouran M, Turco GM, Zhu YW, O’Malley RC, Brady SM, Dickel DE (2019). High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep 27, 2241-2247. |
[44] | Song QX, Ando A, Jiang N, Ikeda Y, Chen ZJ (2020). Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biol 21, 178. |
[45] | Song XH, Guo PR, Wang ML, Chen LC, Zhang JH, Xu MY, Liu NX, Liu M, Fang L, Xu X, Gu Y, Xia KK, Li BS (2023). Spatial transcriptomic atlas of shoot organogenesis in tomato callus. bioRxiv https://doi.org/10.1101/2023.02.24.529793. |
[46] | Sun BC, Wang Y, Yang Q, Gao H, Niu HY, Li YS, Ma Q, Huan Q, Qian WF, Ren B (2023a). A high-resolution transcriptomic atlas depicting nitrogen fixation and nodule development in soybean. J Integr Plant Biol 65, 1536-1552. |
[47] | Sun SJ, Shen XF, Li Y, Li Y, Wang S, Li RC, Zhang HB, Shen GA, Guo BL, Wei JH, Xu J, St-Pierre B, Chen SL, Sun C (2023b). Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism. Nat Plants 9, 179-190. |
[48] | Sun XX, Feng DL, Liu MY, Qin RX, Li Y, Lu Y, Zhang XM, Wang YH, Shen SX, Ma W, Zhao JJ (2022). Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage. Genome Biol 23, 262. |
[49] | Sun Y, Han YF, Sheng K, Yang P, Cao YF, Li HZ, Zhu QH, Chen JH, Zhu SJ, Zhao TL (2023c). Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. Mol Plant 16, 694-708. |
[50] | Tang FC, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu NL, Wang XH, Bodeau J, Tuch BB, Siddiqui A, Lao KQ, Surani MA (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6, 377-382. |
[51] | Tao ST, Liu P, Shi YN, Feng YL, Gao JJ, Chen LF, Zhang AC, Cheng XJ, Wei HR, Zhang T, Zhang WL (2022). Single-cell transcriptome and network analyses unveil key transcription factors regulating mesophyll cell development in maize. Genes 13, 374. |
[52] | Tian CH, Du QW, Xu MX, Du F, Jiao YL (2020). Single-nucleus RNA-seq resolves spatiotemporal developmental trajectories in the tomato shoot apex. bioRxiv https://doi.org/10.1101/2020.09.20.305029. |
[53] | Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li SQ, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381-386. |
[54] | Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, Liou PC, Sun YH, Shuai P, Su JC, Ku C, Lin YCJ (2023). Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biol 24, 3. |
[55] | Turco GM, Rodriguez-Medina J, Siebert S, Han DN, Valderrama-Gómez Má, Vahldick H, Shulse CN, Cole BJ, Juliano CE, Dickel DE, Savageau MA, Brady SM (2019). Molecular mechanisms driving switch behavior in xylem cell differentiation. Cell Rep 28, 342-351. |
[56] | Wang DH, Hu X, Ye HZ, Wang Y, Yang Q, Liang XD, Wang ZL, Zhou YF, Wen MM, Yuan XY, Zheng XM, Ye W, Guo BY, Yusuyin M, Russinova E, Zhou Y, Wang K (2023). Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton. Genome Biol 24, 49. |
[57] | Wang JB, Li Y, Wu TW, Miao C, Xie MJ, Ding B, Li M, Bao SG, Chen XQ, Hu ZR, Xie XD (2021a). Single-cell-type transcriptomic analysis reveals distinct gene expression profiles in wheat guard cells in response to abscisic acid. Funct Plant Biol 48, 1087-1099. |
[58] | Wang Q, Wu Y, Peng AQ, Cui JL, Zhao MY, Pan YT, Zhang MT, Tian K, Schwab W, Song CK (2022). Single-cell transcriptome atlas reveals developmental trajectories and a novel metabolic pathway of catechin esters in tea leaves. Plant Biotechnol J 20, 2089-2106. |
[59] | Wang XL, He Y, Zhang QM, Ren XW, Zhang ZM (2021b). Direct comparative analyses of 10× Genomics chromium and Smart-Seq2. Genom Proteom Bioinf 19, 253-266. |
[60] | Wang Y, Huan Q, Li K, Qian WF (2021c). Single-cell transcriptome atlas of the leaf and root of rice seedlings. J Genet Genomics 48, 881-898. |
[61] | Wendrich JR, Yang BJ, Vandamme N, Verstaen K, Smet W, van de Velde C, Minne M, Wybouw B, Mor E, Arents HE, Nolf J, van Duyse J, van Isterdael G, Maere S, Saeys Y, De Rybel B (2020). Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science 370, eaay4970. |
[62] | Xia KK, Sun HX, Li J, Li JM, Zhao Y, Chen LC, Qin C, Chen RY, Chen ZY, Liu GY, Yin RL, Mu BB, Wang XJ, Xu MY, Li XY, Yuan PS, Qiao YX, Hao SJ, Wang J, Xie Q, Xu JS, Liu SP, Li YX, Chen A, Liu LQ, Yin Y, Yang HM, Wang J, Gu Y, Xu X (2022). The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev Cell 57, 1299-1310. |
[63] | Xiao YB, Zhang ZX, Wang YZ, Liu H, Chen LT (2023). Research progress of spatiotemporal transcriptomes. Chin Bull Bot 58, 214-232. (in Chinese) |
肖宇彬, 张子旭, 王玉珠, 刘欢, 陈乐天 (2023). 时空转录组研究进展. 植物学报 58, 214-232. | |
[64] | Xie JB, Li M, Zeng JY, Li X, Zhang DQ (2022). Single-cell RNA sequencing profiles of stem-differentiating xylem in poplar. Plant Biotechnol J 20, 417-419. |
[65] | Xu XS, Crow M, Rice BR, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu ZF, Wang LY, Fox N, Wang XF, Drenkow J, Luo AD, Char SN, Yang B, Sylvester AW, Gingeras TR, Schmitz RJ, Ware D, Lipka AE, Jackson D (2021). Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev Cell 56, 557-568. |
[66] | Yang M, Tang LY, Zi XY (2021). Single-cell transcriptome sequencing and tumor precision medicine. Chin J Cancer Biother 28, 1053-1060. (in Chinese) |
杨梅, 唐乐怡, 訾晓渊 (2021). 单细胞转录组测序和肿瘤精准医疗. 中国肿瘤生物治疗杂志 28, 1053-1060. | |
[67] | Yin RL, Xia KK, Xu X (2023). Spatial transcriptomics drives a new era in plant research. Plant J 116, 1571-1581. |
[68] | Yu CN, Hou KL, Zhang HS, Liang XS, Chen C, Wang ZJ, Wu QC, Chen GL, He JX, Bai EH, Li XF, Du TR, Wang YF, Wang MS, Feng SG, Wang HZ, Shen CJ (2023). Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. Plant J 115, 1243-1260. |
[69] | Zhai N, Xu L (2021). Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat Plants 7, 1453-1460. |
[70] | Zhang LH, He C, Lai YT, Wang YT, Kang L, Liu AK, Lan CX, Su HD, Gao YW, Li ZQ, Yang F, Li Q, Mao HL, Chen DJ, Chen W, Kaufmann K, Yan WH (2023). Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis. Genome Biol 24, 65. |
[71] | Zhang ST (2022). Functional Study of the ERF6-GPAT Regulatory Network Based on Single-Cell Transcriptome During the Early Somatic Embryogenesis of Longan. PhD dissertation. Fuzhou: Fujian Agriculture and Forestry University. pp. 29-60. (in Chinese) |
张舒婷 (2022). 基于单细胞转录组的ERF6-GPAT调控网络在龙眼体胚发生早期的功能研究. 博士论文. 福州: 福建农林大学. pp. 29-60. | |
[72] | Zhang TQ, Chen Y, Liu Y, Lin WH, Wang JW (2021). Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat Commun 12, 2053. |
[73] | Zhang TQ, Xu ZG, Shang GD, Wang JW (2019a). A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol Plant 12, 648-660. |
[74] | Zhang XN, Li TQ, Liu F, Chen YQ, Yao JC, Li ZY, Huang YY, Wang JB (2019b). Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems. Mol Cell 73, 130-142. |
[75] | Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu JJ, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017). Massively parallel digital transcriptional profiling of single cells. Nat Commun 8, 14049. |
[76] | Zhu J, Lolle S, Tang A, Guel B, Kvitko B, Cole B, Coaker G (2023). Single-cell profiling of Arabidopsis leaves to Pseudomonas syringae infection. Cell Rep 42, 112676. |
[77] | Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W (2017). Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65, 631-643. |
[78] | Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, Mazutis L (2017). Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12, 44-73. |
/
〈 |
|
〉 |