[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

盐肤木APETALA3/DEFICIENS同源基因的克隆与功能分析

  • 顾磊 ,
  • 张棋 ,
  • 张霞 ,
  • 杨冰冰 ,
  • 王芳岚 ,
  • 刘文 ,
  • 陈发菊
展开
  • 三峡大学生物技术研究中心, 三峡区域植物遗传与种质创新重点实验室(三峡大学), 宜昌 443002

收稿日期: 2024-01-30

  录用日期: 2024-03-30

  网络出版日期: 2024-04-17

基金资助

国家自然科学基金(32370393);湖北省中央引导地方科技发展专项(2022BGE265)

Cloning and Functional Analysis of APETALA3/DEFICIENS Homologous Gene from Rhus chinensis

  • Lei Gu ,
  • Qi Zhang ,
  • Xia Zhang ,
  • Bingbing Yang ,
  • Fanglan Wang ,
  • Wen Liu ,
  • Faju Chen
Expand
  • Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443002, China

Received date: 2024-01-30

  Accepted date: 2024-03-30

  Online published: 2024-04-17

摘要

AP3/DEF (APETALA3/DEFICIENS)基因为MADS-box基因家族的B类基因, 在花发育过程中主要参与调控花瓣和雄蕊发育。对盐肤木(Rhus chinensis) AP3/DEF同源基因进行克隆及功能分析, 有助于探究其在盐肤木雄蕊发育过程中的作用。采用RT-PCR技术获得盐肤木AP3/DEF同源基因CDS; 利用NCBI CD Search对其序列和结构域进行比较分析; 利用酵母双杂交系统, 对AP3/DEF同源蛋白与盐肤木中其它MADS-box转录因子进行蛋白互作验证; 通过实时荧光定量PCR分析盐肤木AP3/DEF同源基因的时空表达模式; 用过表达拟南芥(Arabidopsis thaliana)验证盐肤木AP3/DEF同源基因在花器官发育中的功能。结果表明, 克隆得到2个盐肤木AP3/DEF同源基因分别命名为RcAP3 (GenBank: OR962160)和RcTM6 (GenBank: OR962159), 根据其氨基酸保守结构域比对及系统进化分析, 发现这2个蛋白序列与漆树科的芒果(Mangifera indica)和阿月浑子(Pistacia vera) AP3/DEF同源蛋白亲缘关系最近。酵母双杂交结果表明, RcAP3和RcTM6与盐肤木B类蛋白RcPI、C类蛋白RcAG和Rcag存在互作关系, 但与A类和E类蛋白不存在互作关系。实时荧光定量PCR分析结果显示, RcAP3RcTM6基因在不同性别盐肤木花芽快速发育期高表达, 在花芽发育早期和开花后表达水平较低; RcAP3在雌花、雄花和两性花的花芽分化过程中均维持较高的表达水平, 而RcTM6在两性花中显著表达, 在雄花和雌花中表达量很低。两性花快速生长期, RcAP3在花瓣和雄蕊中高表达且差异很小, 而RcTM6在雄蕊中的表达量显著高于其它花器官。RcAP3基因能恢复拟南芥ap3-3突变体花瓣和雄蕊的缺陷表型, RcTM6过表达则导致拟南芥花瓣、雄蕊和子房缩短, 花药败育, 表明盐肤木中同属AP3/DEF亚家族的同源基因RcAP3RcTM6存在功能分化。RcAP3促进花瓣和雄蕊发育, 而RcTM6抑制雄蕊发育。研究结果为进一步研究盐肤木性别分化的分子机制奠定了基础。

本文引用格式

顾磊 , 张棋 , 张霞 , 杨冰冰 , 王芳岚 , 刘文 , 陈发菊 . 盐肤木APETALA3/DEFICIENS同源基因的克隆与功能分析[J]. 植物学报, 2024 , 59(4) : 533 -543 . DOI: 10.11983/CBB24015

Abstract

The APETALA3/DEFICIENS (AP3/DEF) gene is a B-class gene of the MADS-box gene family, which is mainly involved in the regulation of petal and stamen development during flower development. Cloning and analysis of the AP3/DEF homologous genes from Rhus chinensis can help exploring their role in the development of stamen. The CDS of AP3/DEF homologous gene was obtained using RT-PCR; its sequence and structural domains were compared and analyzed by NCBI CD Search; interactions between AP3/DEF homologous proteins and other MADS-box transcription factors in R. chinensis were verified by using yeast two-hybrid system; real-time fluorescence PCR was used to analyze the spatial and temporal expression patterns of the AP3/DEF homologous genes; overexpression in Arabidopsis was conducted to verify the function of the AP3/DEF homologous genes in flower organ development. Two coding sequences of AP3/ DEF homologous genes in R. chinensis were cloned and named RcAP3 (GenBank: OR962160) and RcTM6 (GenBank: OR962159). Based on the alignment of their conserved amino acid domains and phylogenetic analysis, these two protein sequences showed the closest genetic relationship to the AP3/DEF homologous gene-encoded proteins in the Anacardiaceae family, including Mangifera indica and Pistacia vera. The yeast two-hybrid results showed that RcAP3 and RcTM6 interacted with the B-class protein RcPI, the C-class proteins RcAG and Rcag in R. chinensis, but not with the A-class and E-class proteins. Real-time fluorescence quantification results demonstrated that RcAP3 and RcTM6 were highly expressed during the rapid growth stage of flower buds in different sexes of R. chinensis, with lower expression levels during the early bud development and after flowering. RcAP3 exhibited high expression levels during buds differentiation in female, male, and hermaphrodite flowers, while RcTM6 showed significant expression in hermaphrodite flowers and very low expression in male and female flowers. During the rapid growth stage of hermaphrodite flowers, RcAP3 was highly expressed in both petals and stamens with minimal differences, whereas RcTM6 showed significantly higher expression in stamens compared to other floral organs. RcAP3 could restore the petal and stamen phenotypes in the ap3-3 mutant of Arabidopsis, while overexpression of RcTM6 resulted in shortened petals, stamens, and aborted ovaries in Arabidopsis. Functional differentiation exists between the AP3/DEF subfamily homologous genes, RcAP3 and RcTM6. RcAP3 promotes petal and stamen development, while RcTM6 inhibits stamen development. These findings provide a foundation for further research on the molecular mechanisms underlying sex differentiation in R. chinensis.

[an error occurred while processing this directive]

参考文献

[1] Broholm SK, P?ll?nen E, Ruokolainen S, T?htiharju S, Kotilainen M, Albert VA, Elomaa P, Teeri TH (2010). Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. J Exp Bot 61, 75-85.
[2] Cao X, Liu XY, Wang XT, Yang MX, van Giang T, Wang J, Liu XL, Sun S, Wei K, Wang XX, Gao JC, Du YC, Qin Y, Guo YM, Huang ZJ (2019). B-class MADS-box TM6 is a candidate gene for tomato male sterile-1526. Theor Appl Genet 132, 2125-2135.
[3] Causier B, Castillo R, Xue Y, Schwarz-Sommer Z, Davies B (2010). Tracing the evolution of the floral homeotic B- and C-function genes through genome synteny. Mol Biol Evol 27, 2651-2664.
[4] Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743.
[5] de Martino G, Pan I, Emmanuel E, Levy A, Irish VF (2006). Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18, 1833-1845.
[6] Doyle JJ (1994). Evolution of a plant homeotic multigene family: toward connecting molecular systematics and molecular developmental genetics. Syst Biol 43, 307-328.
[7] Fang ZW, Qi R, Li XF, Liu ZX (2014). Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3mutant. Gene 550, 200-206.
[8] Goto K, Meyerowitz EM (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8, 1548-1560.
[9] Hernández-Hernández T, Martínez-Castilla LP, Alvarez- Buylla ER (2007). Functional diversification of B MADS- box homeotic regulators of flower development: adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol Biol Evol 24, 465-481.
[10] Jack T, Brockman LL, Meyerowitz EM (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-697.
[11] Jing DL, Chen WW, Shi M, Wang D, Xia Y, He Q, Dang JB, Guo QG, Liang GL (2020). Ectopic expression of an Eriobotrya japonica APETALA3 ortholog rescues the petal and stamen identities in Arabidopsis ap3-3 mutant. Biochem Biophys Res Commun 523, 33-38.
[12] Jing DL, Xia Y, Zhang SG, Wang JH (2016). Expression analysis of B-class MADS-box genes from Catalpa speciosa. Chin Bull Bot 51, 210-217. (in Chinese)
  景丹龙, 夏燕, 张守攻, 王军辉 (2016). 黄金树B类MADS- box基因表达特征分析. 植物学报 51, 210-217.
[13] Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE (2004). Phylogeny and diversification of B-function MADS- box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am J Bot 91, 2102-2118.
[14] Kramer EM, Irish VF (2000). Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int J Plant Sci 161, S29-S40.
[15] Lai XL, Daher H, Galien A, Hugouvieux V, Zubieta C (2019). Structural basis for plant MADS transcription factor oligomerization. Comput Struct Biotechnol J 17, 946- 953.
[16] Lamb RS, Irish VF (2003). Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci USA 100, 6558-6563.
[17] Li B, Gao JY, Gong LM, Liu PA, Li SX (2015). Chemical constituents from Rhus chinensis fruit dregs. J Chin Medi Materials 38, 1209-1211. (in Chinese)
  李斌, 高洁莹, 龚力民, 刘平安, 李顺祥 (2015). 盐肤木果粕化学成分研究. 中药材 38, 1209-1211.
[18] Li MC, Wang AD, Zhang YQ, Han TT, Guan L, Fan DX, Liu JY, Xu YN (2022). A comprehensive review on ethnobotanical, phytochemical and pharmacological aspects of Rhus chinensis Mill. J Ethnopharmacol 293, 115288.
[19] Li XF, Xu J, Yang R, Jia LY, Deng XJ, Xiong LJ, Zhang XP, Fang Q, Zhang W, Sun Y, Xu L (2013). Analysis of B-class genes NAP3L3 and NAP3L4 in Narcissus tazetta var. chinensis. Plant Mol Biol Rep 31, 255-263.
[20] Litt A, Kramer EM (2010). The ABC model and the diversification of floral organ identity. Semin Cell Dev Biol 21, 129-137.
[21] Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-??CTmethod. Methods 25, 402-408.
[22] Ma N, Cai SB, Sun YL, Chu CQ (2024). Chinese sumac (Rhus chinensis Mill.) fruits prevent hyperuricemia and uric acid nephropathy in mice fed a high-purine yeast diet. Nutrients 16, 184.
[23] Poupin MJ, Federici F, Medina C, Matus JT, Timmermann T, Arce-Johnson P (2007). Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 404, 10-24.
[24] Rijpkema AS, Royaert S, Zethof J, van der Weerden G, Gerats T (2006). Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell 18, 1819-1832.
[25] Rusanov K, Kovacheva N, Rusanova M, Linde M, Debener T, Atanassov I (2019). Genetic control of flower petal number in Rosa × Damascena Mill f. trigintipetala. Biotechnol Biotec Eq 33, 597-604.
[26] Shen GX, Jia Y, Wang WL (2021). Evolutionary divergence of motifs in B-class MADS-box proteins of seed plants. J Biol Res-Thessalon 28, 12.
[27] Shen GX, Yang CH, Shen CY, Huang KS (2019). Origination and selection of ABCDE and AGL6 subfamily MADS- box genes in gymnosperms and angiosperms. Biol Res 52, 25.
[28] Sommer H, Beltrán JP, Huijser P, Pape H, L?nnig WE, Saedler H, Schwarz-Sommer Z (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homolo-gy to transcription factors. EMBO J 9, 605-613.
[29] Sun FH, Fang HY, Wen XH, Zhang LS (2023). Phylogenetic and expression analysis of MADS-box gene family in Rhododendron ovatum. Chin Bull Bot 58, 404-416. (in Chinese)
  孙福辉, 方慧仪, 温小蕙, 张亮生 (2023). 马银花MADS- box基因家族系统进化与表达分析. 植物学报 58, 404-416.
[30] Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T (2004). The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16, 741-754.
[31] Ye A, Zhang CL, Sun YL, Wang WN, He YH, Bao MZ (2017). Characterization and functional analysis of five MADS-Box B class genes related to floral organ identification in Tagetes erecta. PLoS One 12, e0169777.
[32] Zhang HQ, Han W, Linghu T, Zhao ZX, Wang AZ, Zhai R, Yang CQ, Xu LF, Wang ZG (2023). Overexpression of a pear B-class MADS-box gene in tomato causes male sterility. Fruit Res 3, 1.
[33] Zhang Q, Wang BG, Duan K, Wang LG, Wang M, Tang XM, Pan AH, Sui SZ, Wang GD (2011). The paleoAP3-type gene CpAP3, an ancestral B-class gene from the basal angiosperm Chimonanthus praecox, can affect stamen and petal development in higher eudicots. Dev Genes Evol 221, 83-93.
文章导航

/

[an error occurred while processing this directive]