[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]西藏野生拟南芥开花时间变异的遗传基础
收稿日期: 2023-10-15
录用日期: 2024-01-02
网络出版日期: 2024-01-12
基金资助
国家自然科学基金(31970242)
Genetic Basis of Flowering Time Variations in Tibetan Arabidopsis thaliana
Received date: 2023-10-15
Accepted date: 2024-01-02
Online published: 2024-01-12
开花时间是被子植物生活史中的关键节点。十字花科植物拟南芥(Arabidopsis thaliana)广布于世界各地, 在海拔4 000 m以上的青藏高原也发现了该物种的自然居群, 高原独特的环境塑造了其生活史的独特表型, 在开花时间上表现为中等程度早花。该研究构建了西藏拟南芥Lhasa居群的F2代作图群体, 基于全基因组测序的QTL-seq定位分析, 在该居群中定位到主效基因FLC, 并且鉴定到其第1个内含子中存在2 307 bp的缺失, 这种单倍型只存在于西藏拟南芥居群。利用CRISPR-Cas9技术构建了Lhasa背景的flc-/-突变体, 表现为开花时间显著提前。研究结果表明, 西藏拟南芥开花时间改变的主要原因是FLC第1个内含子缺失, 该变异并未使其丧失全部功能, 这可能有利于西藏拟南芥适应青藏高原独特的气候环境。
关键词: 西藏拟南芥; 开花时间; Flowering Locus C; 适应性演化
杨继轩 , 王雪霏 , 顾红雅 . 西藏野生拟南芥开花时间变异的遗传基础[J]. 植物学报, 2024 , 59(3) : 373 -382 . DOI: 10.11983/CBB23140
Flowering time is a critical point in the life cycle of angiosperm plants. Arabidopsis thaliana of the Brassicaceae is widely distributed around the world, and the natural populations of this species have been found at altitude 4 000 m in the Qinghai-Tibet Plateau. The cold/short summer plateau climate has shaped their flowering time to be moderately early compared with those living in low altitude areas. In this study, we constructed an F2 mapping population and utilized whole-genome sequencing-based QTL-seq analysis to locate the major effect QTLs in Lhasa population of A. thaliana, and identified a haplotype-specific deletion of 2 307 bp within the first intron of FLC, which is unique to Tibetan A. thaliana. Lhasa population flc-/- mutant was constructed by CRISPR-Cas9 gene editing technique. The mutant exhibited significantly earlier flowering time than Lhasa. The above findings suggested that the deletion in the first intron of FLC in Tibetan A. thaliana was most likely the major cause for the early flowering phenotype, although it did not cause complete function loss of the FLC. This variation may have facilitated the adaptation of Tibetan A. thaliana to the unique climatic environment of the Qinghai-Tibet Plateau.
[1] | Adamczyk BJ, Lehti-Shiu MD, Fernandez DE (2007). The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50, 1007-1019. |
[2] | Angel A, Song J, Dean C, Howard M (2011). A polycomb- based switch underlying quantitative epigenetic memory. Nature 476, 105-108. |
[3] | Angel A, Song J, Yang HC, Questa JI, Dean C, Howard M (2015). Vernalizing cold is registered digitally at FLC. Proc Natl Acad Sci USA 112, 4146-4151. |
[4] | Berry S, Hartley M, Olsson TSG, Dean C, Howard M (2015). Local chromatin environment of a polycomb target gene instructs its own epigenetic inheritance. eLife 4, e07205. |
[5] | Choi K, Kim J, Hwang HJ, Kim S, Park C, Kim SY, Lee I (2011). The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell 23, 289-303. |
[6] | Crevillén P, Dean C (2011). Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context. Curr Opin Plant Biol 14, 38-44. |
[7] | DeLeo VL, Menge DNL, Hanks EM, Juenger TE, Lasky JR (2020). Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana. Glob Change Biol 26, 523-538. |
[8] | Ellis TJ, Postma FM, Oakley CG, ?gren J (2021). Life-history trade-offs and the genetic basis of fitness in Arabidopsis thaliana. Mol Ecol 30, 2846-2858. |
[9] | He F, Kang D, Ren Y, Qu LJ, Zhen Y, Gu H (2007). Genetic diversity of the natural populations of Arabidopsis thaliana in China. Heredity 99, 423-431. |
[10] | Heo JB, Sung S (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76-79. |
[11] | Hepworth J, Antoniou-Kourounioti RL, Berggren K, Selga C, Tudor EH, Yates B, Cox D, Collier Harris BR, Irwin JA, Howard M, S?ll T, Holm S, Dean C (2020). Natural variation in autumn expression is the major adaptive determinant distinguishing Arabidopsis FLC haplotypes. eLife 9, e57671. |
[12] | Jiang DH, Gu XF, He YH (2009). Establishment of the winte- rannual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell 21, 1733-1746. |
[13] | Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000). Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344-347. |
[14] | Jung JH, Lee HJ, Ryu JY, Park CM (2016). SPL3/4/5 integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering. Mol Plant 9, 1647-1659. |
[15] | Kim DH, Sung S (2017). Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev Cell 40, 302-312. |
[16] | Kinoshita A, Richter R (2020). Genetic and molecular basis of floral induction in Arabidopsis thaliana. J Exp Bot 71, 2490-2504. |
[17] | Koornneef M, Hanhart CJ, van der Veen JH (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229, 57-66. |
[18] | Kr?mer U (2015). Planting molecular functions in an ecological context with Arabidopsis thaliana. eLife 4, e06100. |
[19] | Le Corre V, Roux F, Reboud X (2002). DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: extensive nonsynonymous variation is consistent with local selection for flowering time. Mol Biol Evol 19, 1261-1271. |
[20] | Lee I, Bleecker A, Amasino R (1993). Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol Gen Genet 237, 171-176. |
[21] | Li H, Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. |
[22] | Li PJ, Filiault D, Box MS, Kerdaffrec E, van Oosterhout C, Wilczek AM, Schmitt J, McMullan M, Bergelson J, Nordborg M, Dean C (2014). Multiple FLC haplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana. Genes Dev 28, 1635-1640. |
[23] | Liu ZW, Zhao N, Su YN, Chen SS, He XJ (2020). Exogenously overexpressed intronic long noncoding RNAs activate host gene expression by affecting histone modification in Arabidopsis. Sci Rep 10, 3094. |
[24] | Mansfeld BN, Grumet R (2018). QTLseqr: an R package for bulk segregant analysis with next-generation sequencing. Plant Genome 11, 180006. |
[25] | Marquardt S, Boss PK, Hadfield J, Dean C (2006). Additional targets of the Arabidopsis autonomous pathway members, FCA and FY. J Exp Bot 57, 3379-3386. |
[26] | Martínez-Berdeja A, Stitzer MC, Taylor MA, Okada M, Ezcurra E, Runcie DE, Schmitt J (2020). Functional variants of DOG1 control seed chilling responses and variation in seasonal life-history strategies in Arabidopsis thaliana. Proc Natl Acad Sci USA 117, 2526-2534. |
[27] | McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303. |
[28] | Méndez-Vigo B, Picó FX, Ramiro M, Martínez-Zapater JM, Alonso-Blanco C (2011). Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant Physiol 157, 1942-1955. |
[29] | Méndez-Vigo B, Savic M, Ausín I, Ramiro M, Martín B, Picó FX, Alonso-Blanco C (2016). Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis. Plant Cell Environ 39, 282-294. |
[30] | Michaels SD, He YH, Scortecci KC, Amasino RM (2003). Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci USA 100, 10102-10107. |
[31] | Mitchell-Olds T, Schmitt J (2006). Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947-952. |
[32] | Putterill J, Robson F, Lee K, Simon R, Coupland G (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857. |
[33] | Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, Dean C (2005). Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol 138, 1163-1173. |
[34] | Shindo C, Bernasconi G, Hardtke CS (2007). Natural genetic variation in Arabidopsis: tools, traits and prospects for evolutionary ecology. Ann Bot 99, 1043-1054. |
[35] | Springthorpe V, Penfield S (2015). Flowering time and seed dormancy control use external coincidence to generate life history strategy. eLife 4, e05557. |
[36] | Strange A, Li PJ, Lister C, Anderson J, Warthmann N, Shindo C, Irwin J, Nordborg M, Dean C (2011). Majo- reffect alleles at relatively few loci underlie distinct vernalization and flowering variation in Arabidopsis accessions. PLoS One 6, e19949. |
[37] | Sung S, He YH, Eshoo TW, Tamada Y, Johnson L, Nakahigashi K, Goto K, Jacobsen SE, Amasino RM (2006). Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat Genet 38, 706-710. |
[38] | Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013). QTL- seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74, 174-183. |
[39] | The 1001 Genomes Consortium (2016). 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481-491. |
[40] | Xie YR, Zhou Q, Zhao YP, Li QQ, Liu Y, Ma MD, Wang BB, Shen RX, Zheng ZG, Wang HY (2020). FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis flowering. Mol Plant 13, 483-498. |
[41] | Xu XR, Xu JY, Yuan C, Chen QQ, Liu QG, Wang XM, Qin C (2022). BBX17 interacts with CO and negatively regulates flowering time in Arabidopsis thaliana. Plant Cell Physiol 63, 401-409. |
[42] | Yin P, Kang JQ, He F, Qu LJ, Gu HY (2010). The origin of populations of Arabidopsis thaliana in China, based on the chloroplast DNA sequences. BMC Plant Biol 10, 22. |
[43] | Zan YJ, Carlborg ? (2019). A polygenic genetic architecture of flowering time in the worldwide Arabidopsis thaliana population. Mol Biol Evol 36, 141-154. |
[44] | Zeng LY, Gu ZY, Xu M, Zhao N, Zhu WD, Yonezawa T, Liu TM, Qiong L, Tersing T, Xu LL, Zhang Y, Xu RY, Sun NY, Huang YY, Lei JK, Zhang L, Xie F, Zhang F, Gu HY, Geng YP, Hasegawa M, Yang ZH, Crabbe MJC, Chen F, Zhong Y (2017). Discovery of a high-altitude ecotype and ancient lineage of Arabidopsis thaliana from Tibet. Sci Bull 62, 1628-1630. |
[45] | Zhang YN, Zhou YP, Chen QH, Huang XL, Tian CE (2014). Molecular basis of flowering time regulation in Arabidopsis. Chin Bull Bot 49, 469-482. (in Chinese) |
张艺能, 周玉萍, 陈琼华, 黄小玲, 田长恩 (2014). 拟南芥开花时间调控的分子基础. 植物学报 49, 469-482. | |
[46] | Zhu P, Lister C, Dean C (2021). Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature 599, 657-661. |
[47] | Zou YP, Hou XH, Wu Q, Chen JF, Li ZW, Han TS, Niu XM, Yang L, Xu YC, Zhang J, Zhang FM, Tan DY, Tian ZX, Gu HY, Guo YL (2017). Adaptation of Arabidopsis thaliana to the Yangtze River basin. Genome Biol 18, 239. |
/
〈 | 〉 |