†共同第一作者
收稿日期: 2023-05-31
录用日期: 2023-12-19
网络出版日期: 2024-01-12
基金资助
国家重点基础研究发展计划(2021YFD1200501);国家自然科学基金(32072412);科技创新2030-重大项目(2022ZD-0400203-2)
Mining and Preliminary Mapping of Rice Resistance Genes Against Bacterial Leaf Streak
†These authors contributed equally to this paper
Received date: 2023-05-31
Accepted date: 2023-12-19
Online published: 2024-01-12
由稻黄单胞菌稻生致病变种(Xanthomonas oryzae pv. oryzicola, Xoc)引起的细菌性条斑病(BLS)是水稻(Oryza sativa)生产上的重要病害, 近年来其发病呈快速上升趋势, 特别是在我国南方(包括江苏、浙江、福建和广东等地)稻区危害严重。种植抗病品种是防治BLS最理想的措施, 但目前生产上严重缺乏可用于育种的优异抗病基因资源。通过人工接种鉴定筛选水稻种质资源, 挖掘到2份高抗BLS材料(M1和D1)。多菌株系接种结果表明, M1具有非小种特异性广谱抗病(RNS BSR)特征。经遗传群体分析表明, 栽培稻M1携带单个显性抗BLS新基因Xo-3。通过混池测序和关联分析, 将Xo-3基因初步定位在2号染色体上的一段候选区域内。抗BLS种质资源的挖掘及其抗性遗传基础的解析, 将有助于理解水稻-Xoc互作机理, 从而培育抗BLS水稻新品种和制定科学的防治BLS策略。
方妍力 , 田传玉 , 苏如意 , 刘亚培 , 王春连 , 陈析丰 , 郭威 , 纪志远 . 水稻抗细菌性条斑病基因挖掘与初定位[J]. 植物学报, 2024 , 59(1) : 1 -9 . DOI: 10.11983/CBB23071
Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc), is one of the most important diseases of rice, which is now highly prevalent in rice-growing regions of China, especially in Southern China (including Jiangsu, Zhejiang, Fujian, and Guangdong). Planting resistant varieties is considered as the best approach to control BLS. However, no resistant cultivars are available owing to limited genetic resources for BLS resistance. Two highly BLS-resistant materials (M1 and D1) have been discovered in our research by screening germplasm against BLS via syringe inoculation. Multi-strain inoculation showed that M1 had the characteristics of race-nonspecific broad-spectrum resistance (RNS BSR). The genetic population analysis showed that the cultivated rice M1 harbored a single dominant new gene Xo-3 of resistance to BLS. Through BSA-seq and association analysis, Xo-3 was initially mapped in a candidate region on chromosome 2. The mining of germplasm resources of BLS-resistant and the analysis of the genetic basis of its resistance will help our understanding of the interaction mechanism between rice and Xoc, so as to cultivate new varieties of BLS-resistant rice and development scientific strategies in controlling BLS.
[1] | 黄大辉, 岑贞陆, 刘驰, 贺文爱, 陈英之, 马增凤, 杨朗, 韦绍丽, 刘亚利, 黄思良, 杨新庆, 李容柏 (2008). 野生稻细菌性条斑病抗性资源筛选及遗传分析. 植物遗传资源学报 9, 11-14. |
[2] | 林作晓, 龙梦玲, 唐洁瑜, 辛德育, 黄成宇 (2021). 广西2020年农作物主要病虫害发生实况. 广西植保 34, 25-32. |
[3] | 马路, 方媛, 肖飒清, 周纯, 金哲伦, 叶雯澜, 饶玉春 (2018). 水稻条斑病抗性QTL的挖掘及相关基因的表达. 植物学报 53, 468-476. |
[4] | 王田幸子, 朱峥, 陈悦, 刘玉晴, 燕高伟, 徐珊, 张彤, 马金姣, 窦世娟, 李莉云, 刘国振 (2021). 水稻OsWRKY42是Xa21介导的抗白叶枯病途径新元件. 植物学报 56, 687-698. |
[5] | Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL (2011). Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193, 5450-5464. |
[6] | Cai LL, Cao YY, Xu ZY, Ma WX, Zakria M, Zou LF, Cheng ZQ, Chen GY (2017). A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Sci Rep 7, 5089. |
[7] | Cernadas RA, Doyle EL, Ni?o-Liu DO, Wilkins KE, Bancroft T, Wang L, Schmidt CL, Caldo R, Yang B, White FF, Nettleton D, Wise RP, Bogdanove AJ (2014). Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog 10, e1003972. |
[8] | Ji CH, Ji ZY, Liu B, Cheng H, Liu H, Liu SZ, Yang B, Chen GY (2020). Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Commun 1, 100087. |
[9] | Ji ZY, Ji CH, Liu B, Zou LF, Chen GY, Yang B (2016). Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nat Commun 7, 13435. |
[10] | Ji ZY, Wang CL, Zhao KJ (2018). Rice routes of countering Xanthomonas oryzae. Int J Mol Sci 19, 3008. |
[11] | Ji ZY, Zakria M, Zou LF, Xiong L, Li Z, Ji GH, Chen GY (2014). Genetic diversity of transcriptional activator-like effector genes in Chinese isolates of Xanthomonas oryzae pv. oryzicola. Phytopathology 104, 672-682. |
[12] | Jiang GH, Xia ZH, Zhou YL, Wan J, Li DY, Chen RS, Zhai WX, Zhu LH (2006). Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1. Mol Genet Genomics 275, 354-366. |
[13] | Jiang N, Yan J, Liang Y, Shi YL, He ZZ, Wu YT, Zeng Q, Liu XL, Peng JH (2020). Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—an updated review. Rice 13, 3. |
[14] | Jones JDG, Dangl JL (2006). The plant immune system. Nature 444, 323-329. |
[15] | Li CY, Zhou L, Wu B, Li SH, Zha WJ, Li W, Zhou ZH, Yang LF, Shi L, Lin YJ, You AQ (2022). Improvement of bacterial blight resistance in two conventionally cultivated rice varieties by editing the noncoding region. Cells 11, 2535. |
[16] | Liu HF, Chang QL, Feng WJ, Zhang BG, Wu T, Li N, Yao FY, Ding XH, Chu ZH (2014). Domain dissection of AvrRxo1 for suppressor, avirulence and cytotoxicity functions. PLoS One 9, e113875. |
[17] | Ma ZF, Qin G, Zhang YX, Liu C, Wei MY, Cen ZL, Yan Y, Luo TP, Li ZJ, Liang HF, Huang DH, Deng GF (2021). Bacterial leaf streak 1 encoding a mitogen-activated protein kinase confers resistance to bacterial leaf streak in rice. Plant J 107, 1084-1101. |
[18] | Makino S, Sugio A, White F, Bogdanove AJ (2006). Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola. Mol Plant Microbe Interact 19, 240-249. |
[19] | Meyer M, Cox JA, Hitchings MDT, Burgin L, Hort MC, Hodson DP, Gilligan CA (2017). Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Nat Plants 3, 780-786. |
[20] | Ni Z, Cao YQ, Jin X, Fu ZM, Li JY, Mo XY, He YQ, Tang JL, Huang S (2021). Engineering resistance to bacterial blight and bacterial leaf streak in rice. Rice 14, 38. |
[21] | Ni?o-Liu DO, Ronald PC, Bogdanove AJ (2006). Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7, 303-324. |
[22] | Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu FR, Albert M, Robinson MR, Chan LJG, Luu DD, Chen HM, Bahar O, Daudi A, De Vleesschauwer D, Caddell D, Zhang WG, Zhao XX, Li X, Heazlewood JL, Ruan DL, Majumder D, Chern M, Kalbacher H, Midha S, Patil PB, Sonti RV, Petzold CJ, Liu CC, Brodbelt JS, Felix G, Ronald PC (2015). The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci Adv 1, e1500245. |
[23] | Shidore T, Broeckling CD, Kirkwood JS, Long JJ, Miao JM, Zhao BY, Leach JE, Triplett LR (2017). The effector AvrRxo1 phosphorylates NAD in planta. PLoS Pathog 13, e1006442. |
[24] | Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B (2013). Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol 200, 808-819. |
[25] | Tall H, Lachaux M, Diallo A, Wonni I, Tékété C, Verdier V, Szurek B, Hutin M (2022). Confirmation report of bacterial leaf streak disease of rice caused by Xanthomonas oryzae pv. oryzicola in senegal. Plant Dis 106, 2253. |
[26] | Tian JJ, Hui SG, Shi YR, Yuan M (2019). The key residues of OsTFIIAγ5/Xa5 protein captured by the arginine-rich TFB domain of TALEs compromising rice susceptibility and bacterial pathogenicity. J Integr Agric 18, 1178-1188. |
[27] | Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, Goss EM, Jones JB (2020). Xanthomonas diversity, virulence and plant-pathogen interactions. Nat Rev Microbiol 18, 415-427. |
[28] | Triplett LR, Hamilton JP, Buell CR, Tisserat NA, Verdier V, Zink F, Leach JE (2011). Genomic analysis of Xanthomonas oryzae isolates from rice grown in the United States reveals substantial divergence from known X. oryzae pathovars. Appl Environ Microb 77, 3930-3937. |
[29] | Triplett LR, Shidore T, Long J, Miao JM, Wu SC, Han Q, Zhou CH, Ishihara H, Li JY, Zhao BY, Leach JE (2016). AvrRxo1 is a bifunctional type III secreted effector and toxin-antitoxin system component with homologs in diverse environmental contexts. PLoS One 11, e0158856. |
[30] | Wang CC, Yu H, Huang J, Wang WS, Faruquee M, Zhang F, Zhao XQ, Fu BY, Chen K, Zhang HL, Tai SS, Wei CC, McNally KL, Alexandrov N, Gao XY, Li JY, Li ZK, Xu JL, Zheng TQ (2020). Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnol J 18, 14-16. |
[31] | Wang CL, Qin TF, Yu HM, Zhang XP, Che JY, Gao Y, Zheng CK, Yang B, Zhao KJ (2014). The broad bacterial blight resistance of rice line CBB23 is triggered by a novel transcription activator-like (TAL) effector of Xanthomonas oryzae pv. oryzae. Mol Plant Pathol 15, 333-341. |
[32] | Wang WS, Mauleon R, Hu ZQ, Chebotarov D, Tai SS, Wu ZC, Li M, Zheng TQ, Fuentes RR, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis KC, Xu JL, Sun C, Fu BY, Zhang HL, Gao YM, Zhao XQ, Shen F, Cui X, Yu H, Li ZC, Chen ML, Detras J, Zhou YL, Zhang XY, Zhao Y, Kudrna D, Wang CC, Li R, Jia B, Lu JY, He XC, Dong ZT, Xu JB, Li YH, Wang M, Shi JX, Li J, Zhang DB, Lee S, Hu WS, Poliakov A, Dubchak I, Ulat VJ, Borja FN, Mendoza JR, Ali J, Li J, Gao Q, Niu YC, Yue Z, Naredo MEB, Talag J, Wang XQ, Li JJ, Fang XD, Yin Y, Glaszmann JC, Zhang JW, Li JY, Hamilton RS, Wing RA, Ruan J, Zhang GY, Wei CC, Alexandrov N, McNally KL, Li ZK, Leung H (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43-49. |
[33] | White FF, Yang B (2009). Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiol 150, 1677-1686. |
[34] | Wu T, Zhang HM, Yuan B, Liu HF, Kong LG, Chu ZH, Ding XH (2022). Tal2b targets and activates the expression of OsF3H03g to hijack OsUGT74H4 and synergistically interfere with rice immunity. New Phytol 233, 1864-1880. |
[35] | Xu XM, Xu ZY, Li ZY, Zakria M, Zou LF, Chen GY (2021). Increasing resistance to bacterial leaf streak in rice by editing the promoter of susceptibility gene OsSULRT3;6. Plant Biotechnol J 19, 1101-1103. |
[36] | Xu ZY, Zou LF, Ma WX, Cai LL, Yang YY, Chen GY (2017). Action modes of transcription activator-like effectors (TALEs) of Xanthomonas in plants. J Integr Agric 16, 2736-2745. |
[37] | Yuan M, Ke YG, Huang RY, Ma L, Yang ZY, Chu ZH, Xiao JH, Li XH, Wang SP (2016). A host basal transcription factor is a key component for infection of rice by TALE- carrying bacteria. eLife 5, e19605. |
[38] | Yugander A, Ershad M, Muthuraman PP, Prakasam V, Ladhalakshmi D, Sheshu Madhav M, Srinivas Prasad M, Sundaram RM, Laha GS (2022). Understanding the variability of rice bacterial blight pathogen, Xanthomonas oryzae pv. oryzae in Andhra Pradesh, India. J Basic Microbiol 62, 185-196. |
[39] | Zhang SH, He XY, Zhao JL, Cheng YS, Xie ZM, Chen YH, Yang TF, Dong JF, Wang XF, Liu Q, Liu W, Mao XX, Fu H, Chen ZM, Liao YP, Liu B (2017). Identification and validation of a novel major QTL for harvest index in rice (Oryza sativa L.). Rice 10, 44. |
[40] | Zhao BY, Lin XH, Poland J, Trick H, Leach J, Hulbert S (2005). A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 102, 15383-15388. |
/
〈 | 〉 |