[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
专题论坛

病毒介导的植物基因组编辑技术研究进展

  • 胡丹玲 ,
  • 孙永伟
展开
  • 内蒙古大学生命科学学院, 呼和浩特 010000
*孙永伟, 内蒙古大学生命科学学院副教授、硕士生导师。入选内蒙古自治区高等学校青年科技英才计划。先后主持国家自然科学基金项目3项, 内蒙古自然科学基金面上项目3项。主要从事牧草生物学及牧草基因组编辑体系建立相关研究。在Molecular Plant、Plant Biotechnology Journal和Frontiers in Plants Science等期刊发表学术论文10余篇, 授权国家发明专利10余项。E-mail: sunyongwei@imu.edu.cn

收稿日期: 2023-04-07

  录用日期: 2023-08-07

  网络出版日期: 2023-09-25

基金资助

国家自然科学基金青年科学基金(31800206);国家自然科学基金地区科学基金(32160111);内蒙古自治区自然科学基金面上项目(2020MS03027)

Advances in Virus-mediated Genome Editing Technology in Plants

  • Danling Hu ,
  • Yongwei Sun
Expand
  • School of Life Sciences, Inner Mongolia University, Hohhot 010000, China

Received date: 2023-04-07

  Accepted date: 2023-08-07

  Online published: 2023-09-25

摘要

CRISPR/Cas作为一种新兴的靶向基因组编辑技术, 具有操作过程简便、编辑效率高和支持多靶点编辑等优势, 在植物遗传育种中应用前景广阔。然而对于一些尚未建立遗传转化体系和再生体系的植物, 基因组编辑技术的应用仍然受限。病毒介导的植物基因组编辑技术可不依赖遗传转化和再生等步骤, 即可快速获得无外源转基因成分的基因组编辑植物, 受到广泛关注。该文主要介绍了病毒介导的CRISPR/Cas植物基因组编辑技术的工作原理及优势, 系统总结了该技术在植物基因组编辑领域的应用现状, 并重点讨论了该技术体系存在的问题及挑战, 以期为深入开展这一领域研究提供参考。

本文引用格式

胡丹玲 , 孙永伟 . 病毒介导的植物基因组编辑技术研究进展[J]. 植物学报, 2024 , 59(3) : 452 -462 . DOI: 10.11983/CBB23046

Abstract

As a new technology for targeted genome editing, clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (Cas) have the advantages of easy operation, high editing efficiency, and support for multi-target editing, thus showing wide application prospects in plant genetic breeding. However, the process in plants relies mainly on Agrobacterium- or particle bombardment-mediated genetic transformation, which is time-consuming as well as species- and varieties-dependent. Virus-mediated plant genome editing has attracted extensive atten- tion because of its no requirement of genetic transformation and plant regeneration. In this review, we introduce the working principle and advantages of virus-mediated CRISPR/Cas plant genome editing technology, systematically sum- marize the current application status of this technology in the field of plant genome editing, and focus on discussing the problems and challenges of this technology system, aiming to provide reference for further research and development in this field.

[an error occurred while processing this directive]

参考文献

[1] Ali Z, Abul-Faraj A, Li LX, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes NJ, Voytas DF, Dinesh- Kumar S, Mahfouz MM (2015a). Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8, 1288-1291.
[2] Ali Z, Abul-Faraj A, Piatek M, Mahfouz MM (2015b). Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav 10, e1044191.
[3] Ali Z, Eid A, Ali S, Mahfouz MM (2018). Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Res 244, 333-337.
[4] Al-Shayeb B, Skopintsev P, Soczek KM, Stahl EC, Li Z, Groover E, Smock D, Eggers AR, Pausch P, Cress BF, Huang CJ, Staskawicz B, Savage DF, Jacobsen SE, Banfield JF, Doudna JA (2022). Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell 185, 4574-4586.
[5] Ariga H, Toki S, Ishibashi K (2020). Potato virus X vector- mediated DNA-free genome editing in plants. Plant Cell Physiol 61, 1946-1953.
[6] Avesani L, Marconi G, Morandini F, Albertini E, Bruschet-ta M, Bortesi L, Pezzotti M, Porceddu A (2007). Stability of Potato virus X expression vectors is related to insert size: implications for replication models and risk assessment. Transgenic Res 16, 587-597.
[7] Barrangou R (2014). Cas9 targeting and the CRISPR revolution. Science 344, 707-708.
[8] Bernabé-Orts JM, Casas-Rodrigo I, Minguet EG, Landolfi V, Garcia-Carpintero V, Gianoglio S, Vázquez-Vilar M, Granell A, Orzaez D (2019). Assessment of Cas12a-mediated gene editing efficiency in plants. Plant Biotechnol J 17, 1971-1984.
[9] Bigelyte G, Young JK, Karvelis T, Budre K, Zedaveinyte R, Djukanovic V, Van Ginkel E, Paulraj S, Gasior S, Jones S, Feigenbutz L, Clair GS, Barone P, Bohn J, Acharya A, Zastrow-Hayes G, Henkel-Heinecke S, Silanskas A, Seidel R, Siksnys V (2021). Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modifi-cation in cells. Nat Commun 12, 6191.
[10] Cai QN, Guo DM, Cao YJ, Li Y, Ma R, Liu WP (2022). App- lication of CRISPR/CasΦ2 system for genome editing in plants. Int J Mol Sci 23, 5755.
[11] Cao XS, Xie HT, Song ML, Lu JH, Ma P, Huang BY, Wang MG, Tian YF, Chen F, Peng J, Lang ZB, Li GF, Zhu JK (2022). Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. Innovation (Camb) 4, 100345.
[12] Chapman S, Faulkner C, Kaiserli E, Garcia-Mata C, Savenkov EI, Roberts AG, Oparka KJ, Christie JM (2008). The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci USA 105, 20038-20043.
[13] Chen H, Su ZQ, Tian B, Liu Y, Pang YH, Kavetskyi V, Trick HN, Bai GH (2022). Development and optimization of a Barley stripe mosaic virus-mediated gene editing system to improve Fusarium head blight resistance in wheat. Plant Biotechnol J 20, 1018-1020.
[14] Chen KL, Wang YP, Zhang R, Zhang HW, Gao CX (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70, 667-697.
[15] Chiong KT, Cody WB, Scholthof HB (2021). RNA silencing suppressor-influenced performance of a virus vector de- livering both guide RNA and Cas9 for CRISPR gene editing. Sci Rep 11, 6769.
[16] Cody WB, Scholthof HB, Mirkov TE (2017). Multiplexed gene editing and protein overexpression using a Tobacco mosaic virus viral vector. Plant Physiol 175, 23-35.
[17] Creager ANH, Scholthof KBG, Citovsky V, Scholthof HB (1999). Tobacco mosaic virus: pioneering research for a century. Plant Cell 11, 301-308.
[18] Ellison EE, Nagalakshmi U, Gamo ME, Huang PJ, Dinesh-Kumar S, Voytas DF (2020). Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat Plants 6, 620-624.
[19] Ganesan U, Bragg JN, Deng M, Marr S, Lee MY, Qian SS, Shi ML, Kappel J, Peters C, Lee Y, Goodin MM, Dietzgen RG, Li ZH, Jackson AO (2013). Construction of a Sonchus yellow net virus minireplicon: a step toward re- verse genetic analysis of plant negative-strand RNA viru- ses. J Virol 87, 10598-10611.
[20] Gao CX (2018). The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19, 275-276.
[21] Gao Q, Xu WY, Yan T, Fang XD, Cao Q, Zhang ZJ, Ding ZH, Wang Y, Wang XB (2019). Rescue of a plant cytorhabdo virus as versatile expression platforms for planthopper and cereal genomic studies. New Phytol 223, 2120-2133.
[22] Ghoshal B, Vong B, Picard CL, Feng SH, Tam JM, Jacobsen SE (2020). A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in Arabidopsis thaliana. PLo- S Genet 16, e1008983.
[23] He XL, Liu PC, Ma BJ, Chen XF (2022). Advance in gene- editing technology based on CRISPR/Cas9 and its appli- cation in plants. Chin Bull Bot 57, 508-531. (in Chinese)
  何晓玲, 刘鹏程, 马伯军, 陈析丰 (2022). 基于CRISPR/Cas9的基因编辑技术研究进展及其在植物中的应用. 植物学报 57, 508-531.
[24] He YB, Zhang T, Sun H, Zhan HD, Zhao YD (2020). A reporter for noninvasively monitoring gene expression and plant transformation. Hortic Res 7, 152.
[25] Hu JC, Li SY, Li ZL, Li HY, Song WB, Zhao HM, Lai JS, Xia LQ, Li DW, Zhang YL (2019). A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Mol Plant Pathol 20, 1463-1474.
[26] Jackson AO, Dietzgen RG, Goodin MM, Bragg JN, Deng M (2005). Biology of plant rhabdoviruses. Annu Rev Phytopathol 43, 623-660.
[27] Jiang N, Zhang C, Liu JY, Guo ZH, Zhang ZY, Han CG, Wang Y (2019). Development of Beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. Plant Biotechnol J 17, 1302-1315.
[28] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
[29] Kaya H, Ishibashi K, Toki S (2017). A split Staphylococcus aureus Cas9 as a compact genome-editing tool in plants. Plant Cell Physiol 58, 643-649.
[30] Kim DY, Lee JM, Moon SB, Chin HJ, Park S, Lim Y, Kim D, Koo T, Ko JH, Kim YS (2022). Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat Biotechnol 40, 94-102.
[31] Kim H, Oh Y, Park E, Kang M, Choi Y, Kim SG (2023). Heritable virus-induced genome editing (VIGE) in Nicotiana attenuata. In: Nicotiana attenuata. In: Bae S, Song B, eds. Base Editors: Methods and Protocols. New York: Humana. pp. 203-218.
[32] Lee WS, Hammond-Kosack KE, Kanyuka K (2012). Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: virus-induced gene silencing, host-mediated gene silencing, and virus- mediated overexpression of heterologous protein. Plant Physiol 160, 582-590.
[33] Lei JF, Dai PH, Li Y, Zhang WQ, Zhou GT, Liu C, Liu XD (2021). Heritable gene editing using FT mobile guide RNAs and DNA viruses. Plant Methods 17, 20.
[34] Lei JF, Li Y, Dai PH, Liu C, Zhao Y, You YZ, Qu YY, Chen QJ, Liu XD (2022). Efficient virus-mediated genome editing in cotton using the CRISPR/Cas9 system. Front Plant Sci 13, 1032799.
[35] Li SY, Li JY, He YB, Xu ML, Zhang JH, Du WM, Zhao YD, Xia LQ (2019). Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nat Biotechnol 37, 445-450.
[36] Li SY, Xia LQ (2020). Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives. aBIOTECH 1, 58-73.
[37] Li TD, Hu JC, Sun Y, Li BS, Zhang DL, Li WL, Liu JX, Li DW, Gao CX, Zhang YL, Wang YP (2021). Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol Plant 14, 1787-1798.
[38] Li Z, Zhong ZH, Wu ZS, Pausch P, Al-Shayeb B, Amerasekera J, Doudna JA, Jacobsen SE (2023). Genome editing in plants using the compact editor casΦ. Proc Natl Acad Sci USA 120, e2216822120.
[39] Liang Z, Chen KL, Li TD, Zhang Y, Wang YP, Zhao Q, Liu JX, Zhang HW, Liu CM, Ran YD, Gao CX (2017). Effi- cient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8, 14261.
[40] Lin CS, Hsu CT, Yang LH, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao HCW, Zhang YS, Zhang R, Chang WJ, Yu CT, Wang W, Liao LJ, Gelvin SB, Shih MC (2018). Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16, 1295-1310.
[41] Liu HW, Zhang BH (2020). Virus-based CRISPR/Cas9 genome editing in plants. Trends Genet 36, 810-813.
[42] Liu Q, Zhao CL, Sun K, Deng YL, Li ZH (2023). Engineered biocontainable RNA virus vectors for non-transgenic ge- nome editing across crop species and genotypes. Mol Plant 16, 616-631.
[43] Liu SS, Sretenovic S, Fan TT, Cheng YH, Li G, Qi A, Tang X, Xu Y, Guo WJ, Zhong ZH, He Y, Liang YL, Han QQ, Zheng XL, Gu XF, Qi YP, Zhang Y (2022). Hypercompact CRISPR-Cas12j2 (CasΦ) enables genome editing, gene activation, and epigenome editing in plants. Plant Commun 3, 100453.
[44] Liu YG, Li GS, Zhang YL, Chen LT (2019). Current advances on CRISPR/Cas genome editing technologies in plants. J South China Agricul Univ 40(5), 38-49. (in Chinese)
  刘耀光, 李构思, 张雅玲, 陈乐天 (2019). CRISPR/Cas植物基因组编辑技术研究进展. 华南农业大学学报 40(5), 38-49.
[45] Luo YJ, Na R, Nowak JS, Qiu Y, Lu QS, Yang CY, Marsolais F, Tian LN (2021). Development of a Csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing. BMC Plant Biol 21, 419.
[46] Ma XN, Zhang XY, Liu HM, Li ZH (2020). Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. Nat Plants 6, 773-779.
[47] Mei Y, Beernink BM, Ellison EE, Kone?ná E, Neelakandan AK, Voytas DF, Whitham SA (2019). Protein expression and gene editing in monocots using foxtail mosaic virus vectors. Plant Direct 3, e00181.
[48] Nagalakshmi U, Meier N, Liu JY, Voytas DF, Dinesh-Kumar SP (2022). High-efficiency multiplex biallelic heritable editing in Arabidopsis using an RNA virus. Plant Physiol 189, 1241-1245.
[49] Oh Y, Kim H, Lee HJ, Kim SG (2022). Ribozyme-processed guide RNA enhances virus-mediated plant genome editing. Biotechnol J 17, 2100189.
[50] Pausch P, Al-Shayeb B, Bisom-Rapp E, Tsuchida CA, Li Z, Cress BF, Knott GJ, Jacobsen SE, Banfield JF, Doudna JA (2020). CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 369, 333-337.
[51] Purkayastha A, Dasgupta I (2009). Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem 47, 967-976.
[52] Senthil-Kumar M, Mysore KS (2011). New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16, 656-665.
[53] Su YK, Qiu JR, Zhang H, Song ZQ, Wang JH (2019). Recent progress in evolutionary technology of CRISPR/Cas9 system for plant genome editing. Chin Bull Bot 54, 385-395. (in Chinese)
  苏钺凯, 邱镜仁, 张晗, 宋振巧, 王建华 (2019). CRISPR/ Cas9系统在植物基因组编辑中技术改进与创新的研究进展. 植物学报 54, 385-395.
[54] Tai YS, Bragg J, Meinhardt SW (2007). Functional characterization of toxa and molecular identification of its intracellular targeting protein in wheat. Am J Plant Physiol 2, 76-89.
[55] Tamilselvan-Nattar-Amutha S, Hiekel S, Hartmann F, Lorenz J, Dabhi RV, Dreissig S, Hensel G, Kumlehn J, Heckmann S (2023). Barley stripe mosaic virus-mediated somatic and heritable gene editing in barley (Hordeum vulgare L.). Front Plant Sci 14, 1201446.
[56] Uranga M, Aragonés V, Selma S, Vázquez-Vilar M, Orzáez D, Daròs JA (2021). Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector. Plant J 106, 555-565.
[57] Wang D, Tai PWL, Gao GP (2019). Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18, 358-378.
[58] Wang Q, Ma XN, Qian SS, Zhou X, Sun K, Chen XL, Zhou XP, Jackson AO, Li ZH (2015). Rescue of a plant negative-strand RNA virus from cloned cDNA: insights into enveloped plant virus movement and morphogenesis. PLoS Pathog 11, e1005223.
[59] Wang W, Yu ZT, He F, Bai GH, Trick HN, Akhunova A, Akhunov E (2022). Multiplexed promoter and gene editing in wheat using a virus-based guide RNA delivery system. Plant Biotechnol J 20, 2332-2341.
[60] Wu ZW, Zhang YF, Yu HP, Pan D, Wang YJ, Wang YN, Li F, Liu C, Nan H, Chen WZ, Ji QJ (2021). Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat Chem Biol 17, 1132-1138.
[61] Yin KQ, Han T, Liu G, Chen TY, Wang Y, Yu AYL, Liu YL (2015). A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5, 14926.
[62] Yip BH (2020). Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules 10, 839.
[63] Yuan C, Li C, Yan LJ, Jackson AO, Liu ZY, Han CG, Yu JL, Li DW (2011). A high throughput Barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One 6, e26468.
[64] Zhan XQ, Lu YM, Zhu JK, Botella JR (2021). Genome editing for plant research and crop improvement. J Integr Plant Biol 63, 3-33.
[65] Zhang X, Kang LH, Zhang Q, Meng QQ, Pan YF, Yu ZM, Shi NN, Jackson S, Zhang XL, Wang HZ, Tor M, Hong YG (2020). An RNAi suppressor activates in planta virus- mediated gene editing. Funct Integr Genomics 20, 471-477.
文章导航

/

[an error occurred while processing this directive]