研究报告

香鳞毛蕨dfr-miR160a和靶基因DfARF10的生物信息学及表达模式分析

  • 仲昭暄 ,
  • 张冬瑞 ,
  • 李璐 ,
  • 苏颖 ,
  • 王黛宁 ,
  • 王泽冉 ,
  • 刘洋 ,
  • 常缨
展开
  • 1东北农业大学生命科学学院, 哈尔滨 150036
    2北京师范大学南山附属学校, 深圳 518000

收稿日期: 2023-02-27

  录用日期: 2023-08-29

  网络出版日期: 2023-09-07

基金资助

国家自然科学基金(32270394)

Bioinformatic and Expression Pattern Analysis of dfr-miR160a and Target Gene DfARF10 in Dryopteris fragrans

  • Zhaoxuan Zhong ,
  • Dongrui Zhang ,
  • Lu Li ,
  • Ying Su ,
  • Daining Wang ,
  • Zeran Wang ,
  • Yang Liu ,
  • Ying Chang
Expand
  • 1College of Life Science, Northeast Agricultural University, Haerbin 150036, China
    2Nanshan Affiliated School of Beijing Normal University, Shenzhen 518000, China

Received date: 2023-02-27

  Accepted date: 2023-08-29

  Online published: 2023-09-07

摘要

为深入探究miRNA参与调控香鳞毛蕨(Dryopteris fragrans)生长发育的分子机理, 依据实验室前期建立的miRNA数据库, 筛选出与非生物胁迫相关的差异表达dfr-miR160a前体(dfr-pri-mir160a), 预测其靶基因为DfARF10, 并通过本氏烟草(Nicotiana benthamiana)瞬时共转化GUS以及双荧光素酶(LUC)系统验证dfr-miR160a和DfARF10的靶向关系。结果显示, 共注射dfr-pri-mir160aDfARF10的本氏烟草叶片中GUS活性和LUC活性明显降低; qRT-PCR分析显示, dfr-miR160a及其靶基因DfARF10在香鳞毛蕨的根、配子体、叶柄、叶片和孢子囊中均有表达, 在叶片中表达量最高, 在根中表达量最低; 通过qRT-PCR分析干旱、盐(NaCl)、高温和低温胁迫对dfr-miR160a及其靶基因DfARF10表达的影响。结果表明, 在干旱和高温处理下, dfr-miR160a的表达均上调, 但在NaCl处理下, dfr-miR160a的表达下调; 低温处理下, dfr-miR160a的表达在0-1小时下调, 在3-48小时上调。在NaCl、高温以及低温处理下DfARF10表达均上调; 但在干旱处理下, DfARF10表达下调, 与dfr-miR160a呈现相反的表达趋势。综上, dfr-miR160a靶向DfARF10基因且二者均能响应非生物胁迫。研究结果为从分子层面揭示香鳞毛蕨非生物胁迫抗性机制提供了新的科学依据。

本文引用格式

仲昭暄 , 张冬瑞 , 李璐 , 苏颖 , 王黛宁 , 王泽冉 , 刘洋 , 常缨 . 香鳞毛蕨dfr-miR160a和靶基因DfARF10的生物信息学及表达模式分析[J]. 植物学报, 2024 , 59(1) : 22 -33 . DOI: 10.11983/CBB23025

Abstract

To further understand the molecular mechanism underlying miRNA regulation of growth and development of Dryopteris fragrans, we screened the differentially expressed dfr-pri-mir160a through the miRNA database established earlier in the laboratory, and predicted its target gene as DfARF10. The target relationship between dfr-pri-mir160a and DfARF10 was verified by tobacco transient co-transformation, together with double luciferase (LUC) activity. The results showed that the GUS and LUC activity in tobacco leaves co-injected with dfr-pri-mir160a and DfARF10 decreased significantly. qRT-PCR analysis showed that dfr-miR160a and its target gene DfARF10 were expressed in the gametophytes, roots, petioles, leaves and sporangium of D. fragrans, with the highest expression in the leaves and the lowest in the roots. We analyzed the effects of drought, NaCl, high temperature and low temperature stress treatments on dfr-miR160a and its target gene DfARF10 through qRT-PCR. Under drought and high temperature treatment, the relative expression of dfr-miR160a was up-regulated, but under NaCl treatment, the expression of dfr-miR160a was down-regulated. Under low temperature treatment, the expression of dfr-miR160a was down-regulated at 0-1 h and was up-regulated at 3-48 h. The expression of DfARF10 was up-regulated under NaCl, high temperature and low temperature treatments. However, under drought treatment, the expression of DfARF10 decreased, distinct from dfr-miR160a. The above results indicated that target gene of dfr-miR160 was DfARF10, and both of them can respond to abiotic stress treatment. This study provides a new scientific basis for revealing the abiotic stress resistance mechanism of D. fragrans at the molecular level.

参考文献

[1] 曹丽茹, 张前进, 郭子宁, 鲁晓民, 张新, 魏昕, 皇甫柏树, 王振华 (2021). 玉米生长素响应因子基因家族全基因组鉴定及表达分析. 核农学报 35, 2016-2026.
[2] 陈丽 (2018). 甘蓝型油菜株型及角果长度相关miRNA和靶基因的挖掘. 博士论文. 武汉: 华中农业大学. pp. 1-74.
[3] 陈文浩, 宋国强, 贾小舟, 唐春萍, 冯淡开, 沈志滨 (2017). 香鳞毛蕨中1对间苯三酚类同分异构体的分离与抗真菌活性研究. 中草药 48, 433-436.
[4] 官亚琳, 汤珣, 张冬瑞, 夏德鑫, 李杰, 刘守银, 宋春华, 常缨 (2020). 香鳞毛蕨DfTCP的生物信息学及其表达模式分析. 华北农学报 35(5), 39-46.
[5] 邱晓杰, 汤珣, 官亚琳, 张冬瑞, 苏颖, 常缨 (2021). 香鳞毛蕨DfGNOM基因的克隆及其表达分析. 西北植物学报 41, 1279-1286.
[6] 苏佳萌, 袁强, 张冬瑞, 汤珣, 常缨 (2022). 香鳞毛蕨1-脱氧- D-木酮糖-5-磷酸合酶基因的克隆及表达分析. 西北植物学报 42, 1441-1449.
[7] 孙仙泽, 王政委, 娄贵诚, 王多佳, 齐越, 于晶, 苍晶 (2022). 外源脱落酸和茉莉酸甲酯调控低温胁迫下冬小麦miR444a及其靶基因TaMADS57表达. 植物生理学报 58, 708-722.
[8] 汤珣, 官亚琳, 陈玲玲, 夏德鑫, 宋春华, 刘丽艳, 常缨 (2020). 香鳞毛蕨DfDREB基因克隆与表达模式分析. 西北植物学报 40, 1105-1113.
[9] 吴书昌 (2016). MiR160在棉花胚珠发育中功能分析. 硕士论文. 武汉: 华中农业大学. pp. 1-39.
[10] 张冬瑞, 卜志刚, 陈玲玲, 常缨 (2020). 香鳞毛蕨的组织培养和快速繁殖体系构建. 植物学报 55, 760-767.
[11] 朱冲冲, 彭冰, 曾祖平, 韩旭阳, 王宏, 王天园, 何薇 (2017). 香鳞毛蕨的化学成分及药理作用研究进展. 中国药房 28, 1418-1423.
[12] Bustos-Sanmamed P, Mao GH, Deng Y, Elouet M, Khan GA, Bazin JRM, Turner M, Subramanian S, Yu O, Crespi M, Lelandais-Brière C (2013). Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. Funct Plant Biol 40, 1208-1220.
[13] Cui J, Li XY, Li JL, Wang CY, Cheng DY, Dai CH (2020). Genome-wide sequence identification and expression analysis of ARF family in sugar beet (Beta vulgaris L.) under salinity stresses. PeerJ 8, e9131.
[14] Damodharan S, Zhao DZ, Arazi T (2016). A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. Plant J 86, 458-471.
[15] Ferdous J, Hussain SS, Shi BJ (2015). Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13, 293-305.
[16] Guo ZY, Hao K, Lv ZY, Yu LY, Bu QT, Ren JZ, Zhang HN, Chen RB, Zhang L (2023). Profiling of phytohormone- specific microRNAs and characterization of the miR160- ARF1 module involved in glandular trichome development and artemisinin biosynthesis in Artemisia annua. Plant Biotechnol J 21, 591-605.
[17] Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009). Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21, 3119-3132.
[18] Hao K, Wang Y, Zhu ZP, Wu Y, Chen RB, Zhang L (2022). miR160: an indispensable regulator in plant. Front Plant Sci 13, 833322.
[19] Huang J, Zhao L, Malik S, Gentile BR, Xiong V, Arazi T, Owen HA, Friml J, Zhao DZ (2022). Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis. Nat Commun 13, 6960.
[20] Kumar R, Dhanda SK (2020). Bird eye view of protein subcellular localization prediction. Life (Basel) 10, 347.
[21] Liu XD, Zhang H, Zhao Y, Feng ZY, Li Q, Yang HQ, Luan S, Li JM, He ZH (2013). Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci USA 110, 15485-15490.
[22] Luo J, Zhou JJ, Zhang JZ (2018). Aux/IAA gene family in plants: molecular structure, regulation, and function. Int J Mol Sci 19, 259.
[23] Peng Y, Fang T, Zhang YY, Zhang MY, Zeng LH (2020). Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in Longan (Dimocarpus longan L.). Plants (Basel) 9, 221.
[24] Shen XX, He JQ, Ping YK, Guo JX, Hou N, Cao FG, Li XW, Geng DL, Wang SC, Chen PX, Qin GG, Ma FW, Guan QM (2022). The positive feedback regulatory loop of miR160-auxin response factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees. Plant Physiol 188, 1686-1708.
[25] Song CH, Fan Q, Tang YQ, Sun YN, Wang L, Wei MC, Chang Y (2022a). Overexpression of DfRaf from fragrant woodfern (Dryopteris fragrans) enhances high-temperature tolerance in tobacco (Nicotiana tabacum). Genes (Basel) 13, 1212.
[26] Song CH, Guan YL, Zhang DR, Tang X, Chang Y (2022b). Integrated mRNA and miRNA transcriptome analysis suggests a regulatory network for UV-B-controlled terpenoid synthesis in fragrant woodfern (Dryopteris fragrans). Int J Mol Sci 23, 5708.
[27] Su LY, Xu M, Zhang JD, Wang YH, Lei YS, Li Q (2021). Genome-wide identification of auxin response factor (ARF) family in kiwifruit (Actinidia chinensis) and analysis of their inducible involvements in abiotic stresses. Physiol Mol Biol Plants 27, 1261-1276.
[28] Tang YY, Du GN, Xiang J, Hu CL, Li XT, Wang WH, Zhu H, Qiao LX, Zhao CM, Wang JS, Yu SL, Sui JM (2022). Genome-wide identification of auxin response factor (ARF) gene family and the miR160-ARF18-mediated response to salt stress in peanut (Arachis hypogaea L.). Genomics 114, 171-184.
[29] Wang M, Wu HJ, Fang J, Chu CC, Wang XJ (2017). A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160. Sci Bull 62, 470-475.
[30] Wang YJ, Deng DX, Shi YT, Miao N, Bian YL, Yin ZT (2012). Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes. Mol Biol Rep 39, 2401-2415.
[31] Wójcik AM, Nodine MD, Gaj MD (2017). miR160 and miR166/165 contribute to the LEC2-mediated auxin response involved in the somatic embryogenesis induction in Arabidopsis. Front Plant Sci 8, 2024.
[32] Yang TX, Wang YY, Teotia S, Wang ZH, Shi CN, Sun HW, Gu YY, Zhang ZH, Tang GL (2019). The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Sci Rep 9, 2832.
[33] Zhang YQ, Zeng ZH, Chen CJ, Li CQ, Xia R, Li JG (2019). Genome-wide characterization of the auxin response factor (ARF) gene family of litchi (Litchi chinensis Sonn.): phylogenetic analysis, miRNA regulation and expression changes during fruit abscission. PeerJ 7, e6677.
文章导航

/