研究报告

黄瓜卷须缠绕过程中小G蛋白活性变化

展开
  • 1福建农林大学园艺学院, 福州 350002
    2福建农林大学, 海峡联合研究院, 园艺生物学及代谢组研究中心, 福州 350002
* E-mail: twxrosexyz@163.com

收稿日期: 2022-03-27

  录用日期: 2022-05-10

  网络出版日期: 2022-05-10

基金资助

国家自然科学基金青年科学基金(31501138)

Changes of Small GTPases Activity During Cucumber Tendril Winding

Expand
  • 1College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    2Horticulture Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Received date: 2022-03-27

  Accepted date: 2022-05-10

  Online published: 2022-05-10

摘要

攀爬植物的卷须是对机械刺激极为敏感的器官。拟南芥(Arabidopsis thaliana)小G蛋白能够响应机械刺激调控自身发育, 但小G蛋白信号是否在卷须感受机械刺激发生缠绕过程中发挥作用目前尚不清楚。该研究以黄瓜(Cucumis sativus)为实验材料, 对其卷须受机械刺激缠绕过程中小G蛋白活性进行了探讨。ROP活性检测结果表明, 在卷须缠绕过程中小G蛋白CsROP6的活性显著增强; 同时, 质谱鉴定结果显示, 卷须缠绕过程中生长素的含量明显增加。进一步的实验表明, 外源生长素处理能明显增强CsROP6的活性, 暗示黄瓜卷须在缠绕过程中受机械刺激可能通过生长素增强ROP活性, 且机械刺激激活小G蛋白信号在不同植物中存在一定的保守性。

本文引用格式

李彬琪, 闫佳慧, 李豪, 辛伟, 田云鹤, 杨贞标, 唐文鑫 . 黄瓜卷须缠绕过程中小G蛋白活性变化[J]. 植物学报, 2022 , 57(3) : 299 -307 . DOI: 10.11983/CBB22058

Abstract

Tendrils of climbing plants are highly sensitive to mechanical stimuli. Small GTPases signals can be activated by mechanical stimulation which regulate development in Arabidopsis, but whether small GTPases signals play a role in the entanglement of tendrils response to mechanical stimuli is unknown. In this study, the activity of small GTPases in cucumber tendril after mechanical stimulation was investigated using Cucumis sativus, and ROP activity detection results showed that the activity of small GTPases CsROP6 was significantly enhanced during tendril winding. Meanwhile, mass spectrometry revealed that auxin content increased significantly during tendril winding. Further experiments showed that exogenous auxin treatment increased the activity of CsROP6, suggesting mechanical stimulation might activate ROP6 activity through auxin during tendril winding. This study suggests that mechanical stimulation of small GTPases signals may be conserved in different plants.

参考文献

[1] 马宏棋, 陈敏氡, 朱海生, 温庆放 (2000). 草莓ABA的快速提取方法及超高效液相色谱分析. 园艺学报 41, 577-584.
[2] 谭汝芳, 李玲 (2006). 小G蛋白ROP的研究进展. 生命科学研究 10(S1), 80-84.
[3] 王昕, 种康 (2005). 植物小G蛋白功能的研究进展. 植物学通报 22, 1-10.
[4] 杨文定, 娄成后 (1994). 丝瓜卷须中电化学波传递与快速卷曲反应. 中国科学(B辑) 24, 837-844.
[5] 张之为, 赵君, 樊明寿, 赵燕 (2009). 植物小G蛋白的研究进展. 西北植物学报 29, 622-628.
[6] Bischoff F, Molendijk A, Rajendrakumar CS, Palme K (1999). GTP-binding proteins in plants. Cell Mol Life Sci 55, 233-256.
[7] Bowling AJ, Vaughn KC (2008). Structural and immunocytochemical characterization of the adhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch.). Protoplasma 232, 153-163.
[8] Bowling AJ, Vaughn KC (2009). Gelatinous fibers are widespread in coiling tendrils and twining vines. Am J Bot 96, 719-727.
[9] Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernan-dez-Sanchez ME, Farge E (2018). Mechanotransduction in tumor progression: the dark side of the force. The dark side of the force. J Cell Biol 217, 1571-1587.
[10] Burnham RJ, Revilla-Minaya C (2011). Phylogenetic in-fluence on twining chirality in lianas from Amazonian Peru. Ann Mo Bot Gard 98, 196-205.
[11] Chapman EJ, Estelle M (2009). Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43, 265- 285.
[12] Dharmasiri N, Dharmasiri S, Estelle M (2005). The F-box protein TIR1 is an auxin receptor. Nature 435, 441-445.
[13] Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W (2001). Ion channel-forming alamethi-cin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate sig-naling in lima bean. Plant Physiol 125, 369-377.
[14] Fattet L, Jung HY, Matsumoto MW, Aubol BE, Kumar A, Adams JA, Chen AC, Sah RL, Engler AJ, Pasquale EB, Yang J (2020). Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechano responsive EPHA2/LYN complex. Dev Cell 54, 302-316.
[15] Hamant O, Traas J (2010). The mechanics behind plant development. New Phytol 185, 369-385.
[16] Haswell ES, Meyerowitz EM (2006). MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16, 1-11.
[17] Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008). Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18, 730-734.
[18] Kepinski S, Leyser O (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446-451.
[19] Kleine-Vehn J, Łangowski Ł, Wiśniewska J, Dhonukshe P, Brewer PB, Friml J (2008). Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant 1, 1056-1066.
[20] Monshausen GB, Gilroy S (2009). Feeling green: mechanosensing in plants. Trends Cell Biol 19, 228-235.
[21] Nakamura M, Claes AR, Grebe T, Hermkes R, Viotti C, Ikeda Y, Grebe M (2018). Auxin and ROP GTPase signaling of polar nuclear migration in root epidermal hair cells. Plant Physiol 176, 378-391.
[22] Radin I, Richardson RA, CoomeyJH, Weiner ER, Bascom CS, Li T, Bezanilla M, Haswell ES (2021). Plant PIEZO homologs modulate vacuole morphology during tip growth. Science 373, 586-590.
[23] Reinhold L (1967). Induction of coiling in tendrils by auxin and carbon dioxide. Science 158, 791-793.
[24] Seidelmann K, Melzer B, Speck T (2012). The complex leaves of the monkey’s comb (Amphilophium crucigerum, Bignoniaceae): a climbing strategy without glue. Am J Bot 99, 1737-1744.
[25] Solis AG, Bielecki P, Steach HR, Sharma L, Harman CCD, Yun S, de Zoete MR, Warnock JN, To SDF, York AG, Mack M, Schwartz MA, Dela Cruz CS, Palm NW, Jackson R, Flavell RA (2019). Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69-74.
[26] Sousa-Baena MS, Sinha NR, Hernandes-Lopes J, Lohmann LG (2018). Convergent evolution and the diverse ontogenetic origins of tendrils in angiosperms. Front Plant Sci 9, 403.
[27] Takai Y, Sasaki T, Matozaki T (2001). Small GTP-binding proteins. Physiol Rev 81, 153-208.
[28] Tang WX, Lin WW, Zhou X, Guo JZ, Dang X, Li BQ, Lin DS, Yang ZB (2022). Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr Biol 32, 508-517.
[29] Tao LZ, Cheung AY, Nibau C, Wu HM (2002). RAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins. Plant Cell 17, 2369-2383.
[30] Wu HM, Hazak O, Cheung AY, Yalovsky S (2011). RAC/ ROP GTPases and auxin signaling. Plant Cell 23, 1208- 1218.
[31] Xu TD (2012). Rho GTPase activity analysis in plant cells. Methods Mol Biol 876, 135-144.
[32] Xu TD, Dai N, Chen JS, Nagawa S, Cao M, Li HJ, Zhou ZM, Chen X, De Rycke R, Rakusová H, Wang WY, Jones AM, Friml J, Patterson SE, Bleecker AB, Yang ZB (2014). Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025- 1028.
[33] Xu TD, Wen MZ, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang ZB (2010). Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143, 99-110.
文章导航

/

674-3466/bottom_cn.htm"-->