专题论坛

反式-2-己烯醛在植物防御反应中的作用

展开
  • 北京林业大学, 北京 100083
*E-mail: ybshen@bjfu.edu.cn
第一联系人:† 共同第一作者

收稿日期: 2020-07-22

  录用日期: 2021-01-22

  网络出版日期: 2021-01-22

基金资助

国家自然科学基金(31270655)

The Role of Trans-2-hexenal in Plant Defense Responses

Expand
  • Beijing Forestry University, Beijing 100083, China
First author contact:† These authors contributed equally to this paper

Received date: 2020-07-22

  Accepted date: 2021-01-22

  Online published: 2021-01-22

摘要

反式-2-己烯醛是绿色植物释放的一种小分子挥发性物质, 在调节植物生长发育和抵抗各种环境胁迫中发挥重要作用。已有研究表明, 反式-2-己烯醛可抑制植物根系生长, 具有较高的抑菌和抗虫活性, 也可以作为植物间的“信使”来传递防御信号。该文系统综述了反式-2-己烯醛的生物合成、代谢途径及其在生物胁迫防御反应中的重要作用, 提出了研究中存在的问题及未来的研究方向和建议, 以期为深入揭示反式-2-己烯醛的作用机理提供参考。

本文引用格式

王姝瑶, 郝鑫, 曲悦, 陈迎迎, 沈应柏 . 反式-2-己烯醛在植物防御反应中的作用[J]. 植物学报, 2021 , 56(2) : 232 -240 . DOI: 10.11983/CBB20131

Abstract

As a small molecule volatile compound released by green plants, trans-2-hexenal plays a vital role in regulating plant growth and resistance to various environmental stresses. Studies have shown that trans-2-hexenal exhibits obvious inhibition on growth of plant root, and defense against bacterial infection and herbivorous feeding. Furthermore, it also displays a ‘messenger’ role in transmitting defense signals among plants. This paper reviewed trans-2-hexenal biosynthesis, metabolism pathway and its important role in defense response to biotic stress, also discussed the current problems in this research field and suggestions for future research, which would be helpful to illustrate defense or growth mechanism in plant response to trans-2-hexenal.

参考文献

[1] 陈澄宇 (2014). 苯并噻唑和反式-2-己烯醛对不同虫态韭菜迟眼蕈蚊的生物活性. 硕士论文. 山东农业大学. pp.1-52.
[2] 程乐 (2017). 反式-2-己烯醛对松材线虫生长、繁殖和行为的影响. 硕士论文. 泰安: 山东农业大学. pp.1-52.
[3] 段腾飞, 李昭, 岳田利, 夏秋霞, 孟江洪 (2019). 反式-2-己烯醛对猕猴桃贮藏过程扩展青霉生长的抑制作用. 农业工程学报 35,293-301.
[4] 郭慧媛, 马元丹, 王丹, 左照江, 高岩, 张汝民, 王玉魁 (2014). 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响. 植物生态学报 38,896-903.
[5] 李素霞 (2014). 反式-2-己烯醛对南方根结线虫的作用方式及应用技术研究. 硕士论文. 泰安: 山东农业大学. pp.1-46.
[6] 苗建强 (2013). 反式-2-己烯醛诱导黄瓜抗灰霉病活性初步研究. 硕士论文. 泰安: 山东农业大学. pp.1-44.
[7] 苗建强, 王猛, 李秀环, 杨法辉, 刘峰 (2012). 五种挥发性化合物对土传病原真菌及线虫的生物活性. 植物保护学报 39,561-566.
[8] 穆丹 (2011). 茶树挥发性信息素调控假眼小绿叶蝉及叶蝉三棒缨小蜂行为的功效. 博士论文. 北京: 中国农业大学. pp.1-83.
[9] 孙海峰, 李震宇, 武滨, 秦雪梅 (2013). 绿叶挥发物产生特征及其生态生理作用研究进展. 植物生态学报 37,268-275.
[10] 许宁, 陈宗懋, 游小清 (1999). 引诱茶尺蠖天敌寄生蜂的茶树挥发物的分离与鉴定. 昆虫学报 42,126-131.
[11] 杨艳琴 (2019). 两种脂肪醛及其结构类似物对柑橘酸腐病菌的抑制及构效分析. 硕士论文. 湘潭: 湘潭大学. pp.1-37.
[12] 张庆花, 陈迎迎, 张海龙, 沈应柏 (2019). 1-戊烯-3-酮在植物防御反应中的作用. 植物生理学报 55,225-231.
[13] 张婷, 闫素丽, 董杉杉, 焦春阳, 张笑, 沈应柏 (2016). 反式- 2-己烯醛抑制拟南芥根尖生长素极性运输. 植物生理学报 52,209-215.
[14] 左照江, 张汝民, 高岩 (2009). 植物间挥发物信号的研究进展. 植物学报 44,245-252.
[15] Alméras E, Stolz S, Vollenweider S, Reymond P, Mène- Saffrané L Farmer EE (2003). Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34,205-216.
[16] Arimura GI, Ozawa R, Horiuchi JI, Nishioka T, Takabayashi J (2001). Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29,1049-1061.
[17] Arimura GI, Ozawa R, Nishioka T, Boland W, Koch T, Kühnemann F, Takabayashi J (2002). Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29,87-89.
[18] Bate NJ, Rothstein SJ (1998). C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16,561-569.
[19] Bisignano G, Laganà MG, Trombetta D, Arena S, Nostro A, Uccella N, Mazzanti G, Saija A (2001). In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L. FEMS Microbiol Lett 198,9-13.
[20] Chen CY, Mu W, Zhao YH, Li H, Zhang P, Wang QH, Liu F (2015). Biological activity of trans-2-hexenal against Bradysia odoriphaga (Diptera: Sciaridae) at different developmental stages. J Insect Sci 15,iev075.
[21] Cheng L, Xu SY, Xu CM, Lu HB, Zhang ZQ, Zhang DX, Mu W, Liu F (2017). Effects of trans-2-hexenal on reproduction, growth and behaviour and efficacy against the pinewood nematode,Bursaphelenchus xylophilus. Pest Manag Sci 73,888-895.
[22] Coley PD, Bryant JP, Chapin III FS (1985). Resource availability and plant antiherbivore defense. Science 230,895-899.
[23] Davoine C, Falletti O, Douki T, Iacazio G, Ennar N, Montillet JL, Triantaphylidès C (2006). Adducts of oxylipin electrophiles to glutathione re?ect a 13 speci?city of the downstream lipoxygenase pathway in the tobacco hypersensitive response. Plant Physiol 140,1484-1493.
[24] Dittberner U, Schmetzer B, G?lzer P, Eisenbrand G, Zankl H (1997). Genotoxic effects of 2-trans-hexenal in human buccal mucosa cells in vivo. Mutat Res 390, 161- 165.
[25] Dürr P, Schobinger U, Zellweger M (1981). Aroma von apfelmaische bei deren verflussigung durch pektinasen und zellulasen. Lebensm Wiss Technol 14,268-272.
[26] Farag MA, Fokar M, Abd H, Zhang HM, Allen RD, Paré PW (2005). ( Z)-3-hexenol induces defense genes and downstream metabolites in maize. Planta 220,900-909.
[27] Farmer EE, Davoine C (2007). Reactive electrophile species. Curr Opin Plant Biol 10,380-386.
[28] Farmer EE, Mueller MJ (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64,429-450.
[29] Fürstenberg-H?gg J, Zagrobelny M, Bak S (2013). Plant defense against insect herbivores. Int J Mol Sci 14,10242-10297.
[30] Gardini F, Lanciotti R, Caccioni DRL, Guerzoni ME (1997). Antifungal activity of hexanal as dependent on its vapor pressure. J Agric Food Chem 45,4297-4302.
[31] Gardini F, Lanciotti R, Guerzoni ME (2010). Effect of trans-2-hexenal on the growth of Aspergillus flavus in relation to its concentration, temperature and water activity. Lett Appl Microbiol 33,50-55.
[32] Gomi K, Yamasaki Y, Yamamoto H, Akimitsu K (2003). Characterization of a hydroperoxide lyase gene and effect of C6-volatiles on expression of genes of the oxylipin metabolism in Citrus. J Plant Physiol 160, 1219-1231.
[33] Guo MR, Feng JZ, Zhang PY, Jia LY, Chen KS (2015). Postharvest treatment with trans-2-hexenal induced resistance against Botrytis cinerea in tomato fruit. Australas Plant Pathol 44,121-128.
[34] Hatanaka A (1993). The biogeneration of green odour by green leaves. Phytochemistry 34,1201-1218.
[35] Hatanaka A, Harada T (1973). Formation of cis-3-hexenal, trans-2-hexenal and cis-3-hexenol in macerated Thea sinensis leaves. Phytochemistry 12,2341-2346.
[36] Hatanaka A, Kajiwara T, Sekiya J (1976). Seasonal variations in trans-2-hexenal and linolenic acid in homogenates of Thea sinensis leaves. Phytochemistry 15,1889-1891.
[37] Hatanaka A, Kajiwara T, Sekiya J (1987). Biosynthetic pathway for C6-aldehydes formation from linolenic acid in green leaves. Chem Phys Lipids 44,341-361.
[38] Hirao T, Okazawa A, Harada K, Kobayashi A, Muranaka T, Hirata K (2012). Green leaf volatiles enhance methyl jasmonate response in Arabidopsis. J Biosci Bioeng 114,540-545.
[39] Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2005). Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46, 1093-1102.
[40] Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006). ETR1-, JAR1- and PAD2-dependent signaling pathways are involved in C6-aldehyde-induced defense responses of Arabidopsis. Plant Sci 171,415-423.
[41] Kuzma J, Fall R (1993). Leaf Isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiol 101,435-440.
[42] Liu YY, Du MM, Deng L, Shen JF, Fang MM, Chen Q, Lu YH, Wang QM, Li CY, Zhai QZ (2019). MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31,106-127.
[43] Loreto F, Barta C, Brilli F, Noguest I (2006). On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29,1820-1828.
[44] Lu HB, Xu SY, Zhang WJ, Xu CM, Li BX, Zhang DX, Mu W, Liu F (2017). Nematicidal activity of trans-2-hexenal against Southern Root-Knot Nematode ( Meloidogyne incognita) on tomato plants. J Agric Food Chem 65,544- 550.
[45] Matsui K (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9,274-280.
[46] Matsui K, Kurishita S, Hisamitsu A, Kajiwara T (2000). A lipid-hydrolysing activity involved in hexenal formation. Biochem Soc Trans 28,857-860.
[47] Mirabella R, Rauwerda H, Allmann S, Scala A, Spyropoulou EA, de Vries M, Boersma MR, Breit TM, Haring MA, Schuurink RC (2015). WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis. Plant J 83, 1082-1096.
[48] Mirabella R, Rauwerda H, Struys EA, Jakobs C, Triantaphylidès C, Haring MA, Schuurink RC (2008). The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness. Plant J 53,197-213.
[49] Neri F, Mari M, Menniti AM, Brigati S, Bertolini P (2006). Control of Penicillium expansum in pears and apples by trans-2-hexenal vapours. Postharvest Biol Technol 41,101-108.
[50] Noordermeer MA, Veldink GA, Vliegenthart JFG (2001). Fatty acid hydroperoxide lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance. ChemBioChem 2,494-504.
[51] R?se USR, Manukian A, Heath RR, Tumlinson JH (1996). Volatile semiochemicals released from undamaged cotton leaves (a systemic response of living plants to caterpillar damage). Plant Physiol 111,487-495.
[52] Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC (2013a). Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci 14,17781-17811.
[53] Scala A, Mirabella R, Goedhart J, de Vries M, Haring MA, Schuurink RC (2017). Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness. Plant Mol Biol 95,399-409.
[54] Scala A, Mirabella R, Mugo C, Matsui K, Haring MA, Schuurink RC (2013b). E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Front Plant Sci 4, 74.
[55] Shen H, Hou NY, Schlicht M, Wan YL, Mancuso S, Baluska F (2008). Aluminium toxicity targets PIN2 in Arabidopsis root apices: effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin Sci Bull 53,2480-2487.
[56] Wakai J, Kusama S, Nakajima K, Kawai S, Okumura Y, Shiojiri K (2019). Effects of trans-2-hexenal and cis-3- hexenal on post-harvest strawberry. Sci Rep 9,10112.
[57] Yan ZG, Wang CZ (2006). Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry 67,34-42.
[58] Zeringue HJ Jr, McCormick SP (1990). Aflatoxin production in cultures of Aspergillus flavus incubated in atmospheres containing selected cotton leaf-derived volatiles. Toxicon 28,445-448.
[59] Zhang PY, Chen KS (2009). Age-dependent variations of volatile emissions and inhibitory activity toward Botrytis cinerea and Fusarium oxysporum in tomato leaves treated with chitosan oligosaccharide. J Plant Biol 52,332- 339.
[60] Zhuang H, Hamilton-Kemp TR, Andersen RA, Hildebrand DF (1992). Developmental change in C6-aldehyde formation by soybean leaves. Plant Physiol 100,80-87.
文章导航

/

674-3466/bottom_cn.htm"-->