植物学报 ›› 2021, Vol. 56 ›› Issue (2): 232-240.DOI: 10.11983/CBB20131
• 专题论坛 • 上一篇
收稿日期:
2020-07-22
接受日期:
2021-01-22
出版日期:
2021-03-01
发布日期:
2021-03-17
通讯作者:
沈应柏
作者简介:
*E-mail: ybshen@bjfu.edu.cn基金资助:
Shuyao Wang, Xin Hao, Yue Qu, Yingying Chen, Yingbai Shen()
Received:
2020-07-22
Accepted:
2021-01-22
Online:
2021-03-01
Published:
2021-03-17
Contact:
Yingbai Shen
About author:
First author contact:† These authors contributed equally to this paper
摘要: 反式-2-己烯醛是绿色植物释放的一种小分子挥发性物质, 在调节植物生长发育和抵抗各种环境胁迫中发挥重要作用。已有研究表明, 反式-2-己烯醛可抑制植物根系生长, 具有较高的抑菌和抗虫活性, 也可以作为植物间的“信使”来传递防御信号。该文系统综述了反式-2-己烯醛的生物合成、代谢途径及其在生物胁迫防御反应中的重要作用, 提出了研究中存在的问题及未来的研究方向和建议, 以期为深入揭示反式-2-己烯醛的作用机理提供参考。
王姝瑶, 郝鑫, 曲悦, 陈迎迎, 沈应柏. 反式-2-己烯醛在植物防御反应中的作用. 植物学报, 2021, 56(2): 232-240.
Shuyao Wang, Xin Hao, Yue Qu, Yingying Chen, Yingbai Shen. The Role of Trans-2-hexenal in Plant Defense Responses. Chinese Bulletin of Botany, 2021, 56(2): 232-240.
图1 绿叶挥发物(GLVs)的合成途径(改自Scala et al. 2013b) 关键组分用红色字体表示。PL: 磷脂酶; 13-LOX: 脂氧合酶; HPL: 氢过氧化物裂解酶; ADH: 乙醇脱氢酶; AAT: 醇酰基转移酶; Isomerase: 3E:2Z异构体互变酶
Figure 1 Green leaf volatiles (GLVs) synthetic pathway (modified from Scala et al. 2013b) The key components are in red letters. PL: Phospholipases; 13-LOX: Lipoxygenase; HPL: Hydroperoxide lyase; ADH: Alcohol dehydrogenase; AAT: Alcohol acyltransferase; Isomerase: 3E:2Z isomerase
图2 反式-2-己烯醛在植物防御反应中的作用 LOX: 脂氧合酶; PAL: 苯丙氨酸转氨酶; PPO: 多酚氧化酶; POD: 过氧化物酶
Figure 2 The role of trans-2-hexenal in plant defense responses LOX: Lipoxygenase; PAL: Phenylalaninammo-nialyase; PPO: Polyphenol oxidase; POD: Peroxidase
[1] | 陈澄宇 (2014). 苯并噻唑和反式-2-己烯醛对不同虫态韭菜迟眼蕈蚊的生物活性. 硕士论文. 山东农业大学. pp.1-52. |
[2] | 程乐 (2017). 反式-2-己烯醛对松材线虫生长、繁殖和行为的影响. 硕士论文. 泰安: 山东农业大学. pp.1-52. |
[3] | 段腾飞, 李昭, 岳田利, 夏秋霞, 孟江洪 (2019). 反式-2-己烯醛对猕猴桃贮藏过程扩展青霉生长的抑制作用. 农业工程学报 35,293-301. |
[4] |
郭慧媛, 马元丹, 王丹, 左照江, 高岩, 张汝民, 王玉魁 (2014). 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响. 植物生态学报 38,896-903.
DOI PMID |
[5] | 李素霞 (2014). 反式-2-己烯醛对南方根结线虫的作用方式及应用技术研究. 硕士论文. 泰安: 山东农业大学. pp.1-46. |
[6] | 苗建强 (2013). 反式-2-己烯醛诱导黄瓜抗灰霉病活性初步研究. 硕士论文. 泰安: 山东农业大学. pp.1-44. |
[7] | 苗建强, 王猛, 李秀环, 杨法辉, 刘峰 (2012). 五种挥发性化合物对土传病原真菌及线虫的生物活性. 植物保护学报 39,561-566. |
[8] | 穆丹 (2011). 茶树挥发性信息素调控假眼小绿叶蝉及叶蝉三棒缨小蜂行为的功效. 博士论文. 北京: 中国农业大学. pp.1-83. |
[9] |
孙海峰, 李震宇, 武滨, 秦雪梅 (2013). 绿叶挥发物产生特征及其生态生理作用研究进展. 植物生态学报 37,268-275.
DOI PMID |
[10] | 许宁, 陈宗懋, 游小清 (1999). 引诱茶尺蠖天敌寄生蜂的茶树挥发物的分离与鉴定. 昆虫学报 42,126-131. |
[11] | 杨艳琴 (2019). 两种脂肪醛及其结构类似物对柑橘酸腐病菌的抑制及构效分析. 硕士论文. 湘潭: 湘潭大学. pp.1-37. |
[12] | 张庆花, 陈迎迎, 张海龙, 沈应柏 (2019). 1-戊烯-3-酮在植物防御反应中的作用. 植物生理学报 55,225-231. |
[13] | 张婷, 闫素丽, 董杉杉, 焦春阳, 张笑, 沈应柏 (2016). 反式- 2-己烯醛抑制拟南芥根尖生长素极性运输. 植物生理学报 52,209-215. |
[14] |
左照江, 张汝民, 高岩 (2009). 植物间挥发物信号的研究进展. 植物学报 44,245-252.
DOI URL |
[15] |
Alméras E, Stolz S, Vollenweider S, Reymond P, Mène- Saffrané L Farmer EE (2003). Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34,205-216.
DOI URL |
[16] |
Arimura GI, Ozawa R, Horiuchi JI, Nishioka T, Takabayashi J (2001). Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29,1049-1061.
DOI URL |
[17] |
Arimura GI, Ozawa R, Nishioka T, Boland W, Koch T, Kühnemann F, Takabayashi J (2002). Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29,87-89.
DOI URL |
[18] |
Bate NJ, Rothstein SJ (1998). C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16,561-569.
PMID |
[19] |
Bisignano G, Laganà MG, Trombetta D, Arena S, Nostro A, Uccella N, Mazzanti G, Saija A (2001). In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L. FEMS Microbiol Lett 198,9-13.
PMID |
[20] |
Chen CY, Mu W, Zhao YH, Li H, Zhang P, Wang QH, Liu F (2015). Biological activity of trans-2-hexenal against Bradysia odoriphaga (Diptera: Sciaridae) at different developmental stages. J Insect Sci 15,iev075.
DOI URL |
[21] |
Cheng L, Xu SY, Xu CM, Lu HB, Zhang ZQ, Zhang DX, Mu W, Liu F (2017). Effects of trans-2-hexenal on reproduction, growth and behaviour and efficacy against the pinewood nematode,Bursaphelenchus xylophilus. Pest Manag Sci 73,888-895.
DOI URL |
[22] |
Coley PD, Bryant JP, Chapin III FS (1985). Resource availability and plant antiherbivore defense. Science 230,895-899.
DOI URL |
[23] |
Davoine C, Falletti O, Douki T, Iacazio G, Ennar N, Montillet JL, Triantaphylidès C (2006). Adducts of oxylipin electrophiles to glutathione reflect a 13 specificity of the downstream lipoxygenase pathway in the tobacco hypersensitive response. Plant Physiol 140,1484-1493.
PMID |
[24] | Dittberner U, Schmetzer B, Gölzer P, Eisenbrand G, Zankl H (1997). Genotoxic effects of 2-trans-hexenal in human buccal mucosa cells in vivo. Mutat Res 390, 161- 165. |
[25] | Dürr P, Schobinger U, Zellweger M (1981). Aroma von apfelmaische bei deren verflussigung durch pektinasen und zellulasen. Lebensm Wiss Technol 14,268-272. |
[26] |
Farag MA, Fokar M, Abd H, Zhang HM, Allen RD, Paré PW (2005). ( Z)-3-hexenol induces defense genes and downstream metabolites in maize. Planta 220,900-909.
DOI URL |
[27] |
Farmer EE, Davoine C (2007). Reactive electrophile species. Curr Opin Plant Biol 10,380-386.
DOI URL |
[28] |
Farmer EE, Mueller MJ (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64,429-450.
DOI URL |
[29] |
Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013). Plant defense against insect herbivores. Int J Mol Sci 14,10242-10297.
DOI URL |
[30] |
Gardini F, Lanciotti R, Caccioni DRL, Guerzoni ME (1997). Antifungal activity of hexanal as dependent on its vapor pressure. J Agric Food Chem 45,4297-4302.
DOI URL |
[31] |
Gardini F, Lanciotti R, Guerzoni ME (2010). Effect of trans-2-hexenal on the growth of Aspergillus flavus in relation to its concentration, temperature and water activity. Lett Appl Microbiol 33,50-55.
DOI URL |
[32] |
Gomi K, Yamasaki Y, Yamamoto H, Akimitsu K (2003). Characterization of a hydroperoxide lyase gene and effect of C6-volatiles on expression of genes of the oxylipin metabolism in Citrus. J Plant Physiol 160, 1219-1231.
DOI URL |
[33] |
Guo MR, Feng JZ, Zhang PY, Jia LY, Chen KS (2015). Postharvest treatment with trans-2-hexenal induced resistance against Botrytis cinerea in tomato fruit. Australas Plant Pathol 44,121-128.
DOI URL |
[34] |
Hatanaka A (1993). The biogeneration of green odour by green leaves. Phytochemistry 34,1201-1218.
DOI URL |
[35] |
Hatanaka A, Harada T (1973). Formation of cis-3-hexenal, trans-2-hexenal and cis-3-hexenol in macerated Thea sinensis leaves. Phytochemistry 12,2341-2346.
DOI URL |
[36] |
Hatanaka A, Kajiwara T, Sekiya J (1976). Seasonal variations in trans-2-hexenal and linolenic acid in homogenates of Thea sinensis leaves. Phytochemistry 15,1889-1891.
DOI URL |
[37] |
Hatanaka A, Kajiwara T, Sekiya J (1987). Biosynthetic pathway for C6-aldehydes formation from linolenic acid in green leaves. Chem Phys Lipids 44,341-361.
DOI URL |
[38] |
Hirao T, Okazawa A, Harada K, Kobayashi A, Muranaka T, Hirata K (2012). Green leaf volatiles enhance methyl jasmonate response in Arabidopsis. J Biosci Bioeng 114,540-545.
DOI URL |
[39] |
Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2005). Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46, 1093-1102.
PMID |
[40] |
Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006). ETR1-, JAR1- and PAD2-dependent signaling pathways are involved in C6-aldehyde-induced defense responses of Arabidopsis. Plant Sci 171,415-423.
DOI PMID |
[41] |
Kuzma J, Fall R (1993). Leaf Isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiol 101,435-440.
DOI URL |
[42] |
Liu YY, Du MM, Deng L, Shen JF, Fang MM, Chen Q, Lu YH, Wang QM, Li CY, Zhai QZ (2019). MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31,106-127.
DOI URL |
[43] |
Loreto F, Barta C, Brilli F, Noguest I (2006). On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29,1820-1828.
DOI URL |
[44] |
Lu HB, Xu SY, Zhang WJ, Xu CM, Li BX, Zhang DX, Mu W, Liu F (2017). Nematicidal activity of trans-2-hexenal against Southern Root-Knot Nematode ( Meloidogyne incognita) on tomato plants. J Agric Food Chem 65,544- 550.
DOI URL |
[45] |
Matsui K (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9,274-280.
DOI URL |
[46] |
Matsui K, Kurishita S, Hisamitsu A, Kajiwara T (2000). A lipid-hydrolysing activity involved in hexenal formation. Biochem Soc Trans 28,857-860.
DOI URL |
[47] |
Mirabella R, Rauwerda H, Allmann S, Scala A, Spyropoulou EA, de Vries M, Boersma MR, Breit TM, Haring MA, Schuurink RC (2015). WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis. Plant J 83, 1082-1096.
DOI URL |
[48] |
Mirabella R, Rauwerda H, Struys EA, Jakobs C, Triantaphylidès C, Haring MA, Schuurink RC (2008). The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness. Plant J 53,197-213.
PMID |
[49] |
Neri F, Mari M, Menniti AM, Brigati S, Bertolini P (2006). Control of Penicillium expansum in pears and apples by trans-2-hexenal vapours. Postharvest Biol Technol 41,101-108.
DOI URL |
[50] |
Noordermeer MA, Veldink GA, Vliegenthart JFG (2001). Fatty acid hydroperoxide lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance. ChemBioChem 2,494-504.
DOI URL |
[51] |
Röse USR, Manukian A, Heath RR, Tumlinson JH (1996). Volatile semiochemicals released from undamaged cotton leaves (a systemic response of living plants to caterpillar damage). Plant Physiol 111,487-495.
DOI URL |
[52] |
Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC (2013a). Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci 14,17781-17811.
DOI URL |
[53] |
Scala A, Mirabella R, Goedhart J, de Vries M, Haring MA, Schuurink RC (2017). Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness. Plant Mol Biol 95,399-409.
DOI URL |
[54] | Scala A, Mirabella R, Mugo C, Matsui K, Haring MA, Schuurink RC (2013b). E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Front Plant Sci 4, 74. |
[55] | Shen H, Hou NY, Schlicht M, Wan YL, Mancuso S, Baluska F (2008). Aluminium toxicity targets PIN2 in Arabidopsis root apices: effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin Sci Bull 53,2480-2487. |
[56] |
Wakai J, Kusama S, Nakajima K, Kawai S, Okumura Y, Shiojiri K (2019). Effects of trans-2-hexenal and cis-3- hexenal on post-harvest strawberry. Sci Rep 9,10112.
DOI URL |
[57] |
Yan ZG, Wang CZ (2006). Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry 67,34-42.
DOI URL |
[58] |
Zeringue HJ Jr, McCormick SP (1990). Aflatoxin production in cultures of Aspergillus flavus incubated in atmospheres containing selected cotton leaf-derived volatiles. Toxicon 28,445-448.
DOI URL |
[59] |
Zhang PY, Chen KS (2009). Age-dependent variations of volatile emissions and inhibitory activity toward Botrytis cinerea and Fusarium oxysporum in tomato leaves treated with chitosan oligosaccharide. J Plant Biol 52,332- 339.
DOI URL |
[60] |
Zhuang H, Hamilton-Kemp TR, Andersen RA, Hildebrand DF (1992). Developmental change in C6-aldehyde formation by soybean leaves. Plant Physiol 100,80-87.
PMID |
[1] | 郭慧媛, 马元丹, 王丹, 左照江, 高岩, 张汝民, 王玉魁. 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响[J]. 植物生态学报, 2014, 38(8): 896-903. |
[2] | 孙海峰, 李震宇, 武滨, 秦雪梅. 绿叶挥发物产生特征及其生态生理作用研究进展[J]. 植物生态学报, 2013, 37(3): 268-275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||