[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]拟南芥金属蛋白酶FtSH4通过生长素与活性氧调控叶片衰老
收稿日期: 2017-03-09
录用日期: 2017-05-06
网络出版日期: 2017-05-05
基金资助
基金项目: 国家自然科学基金(No.31370350, No.31271471)
Arabidopsis Metalloprotease FtSH4 Regulates Leaf Senescence Through Auxin and Reactive Oxygen Species
Received date: 2017-03-09
Accepted date: 2017-05-06
Online published: 2017-05-05
植物金属蛋白酶FtSH基因家族在拟南芥(Arabidopsis thaliana)中有12个成员, 目前各基因的功能还不清楚。该文利用细胞生物学和遗传学方法初步分析了拟南芥FtSH4在叶片衰老中的功能。ftsh4-4突变体叶片中H2O2含量及细胞死亡率增加, 叶绿素含量降低; 此外, 突变体中过氧化物酶基因表达上调, 过氧化物酶活性增加, 出现早衰表型。外源抗氧化剂AsA、内源和外源生长素能够通过降低ftsh4-4体内H2O2含量、过氧化物酶基因的表达及过氧化物酶活性, 恢复ftsh4-4叶片的衰老表型。ftsh4-4突变体中生长素响应因子基因ARF2和ARF7上调表达, 外源生长素和抗氧化剂能够降低ARF2和ARF7的表达, 并且ARF2突变能够降低ftsh4-4的H2O2含量并恢复其早衰表型。以上结果表明, FtSH4基因通过生长素与活性氧在调控植物叶片衰老中起重要作用。
张盛春, 李清明, 阳成伟 . 拟南芥金属蛋白酶FtSH4通过生长素与活性氧调控叶片衰老[J]. 植物学报, 2017 , 52(4) : 453 -464 . DOI: 10.11983/CBB17044
The plant metalloproteinases FtSH gene family has 12 members in Arabidopsis, and their functions are still unclear. In the present study, we analyzed the function of FtSH4 on leaf senescence using cell biology and genetics methods. The ftsh4-4 mutant displayed a premature leaf senescence phenotype with increased H2O2 content and cell death rate, decreased chlorophyll content, increased peroxidase gene expression and peroxidase activity. The ftsh4-4 leaf senescence phenotype could be rescued by applying the exogenous antioxidant AsA and endogenous or exogenous auxin by decreasing H2O2 content, peroxidase gene expression level and peroxidase activity. The expression of auxin response factor genes ARF2 and ARF7 was increased in the ftsh4-4 mutant and was reduced by exogenous auxin or AsA. Moreover, H2O2 content and the senescence phenotype of ftsh4-4 could be rescued by the arf2-8 mutant. These results indicate that FtSH4 gene plays an important role in the regulation of leaf senescence through auxin and reactive oxygen species.
Key words: FtSH4,; Arabidopsis,; reactive oxygen species,; auxin,; leaf senescence
[1] | Apel K, Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction.Annu Rev Plant Biol 55, 373-399. |
[2] | Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24, 1-15. |
[3] | Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP (2010). Interplay bet- ween the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling.Plant Cell 22 376-391. |
[4] | Blomster T, Salojarvi J, Sipari N, Brosche M, Ahlfors R, Keinanen M, Overmyer K, Kangasjarvi J (2011). Apo- plastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic res- ponse in Arabidopsis.Plant Physiol 157, 1866-1883. |
[5] | Camilleri C, Jouanin L (1991). The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizo- genes agropine-type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants. Mol Plant Microbe Interact 4, 155-162. |
[6] | Chen GH, Liu CP, Chen SC, Wang LC (2012). Role of ARABIDOPSIS A-FIFTEEN in regulating leaf senescence involves response to reactive oxygen species and is dependent on ETHYLENE INSENSITIVE2. J Exp Bot 63, 275-292. |
[7] | Chen JP, Burke JJ, Velten J, Xin ZU (2006). FtsH11 protease plays a critical role in Arabidopsis thermotolerance.Plant J 48, 73-84. |
[8] | Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005). AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132, 4563-4574. |
[9] | Garcia-Lorenzo M, Sjodin A, Jansson S, Funk C (2006). Protease gene families in Populus and Arabidopsis. BMC Plant Biol 6, 30. |
[10] | Gazarian IG, Lagrimini LM, Mellon FA, Naldrett MJ, Ashby GA, Thorneley RN (1998). Identification of skatolyl hydroperoxide and its role in the peroxidase-catalysed oxidation of indol-3-yl acetic acid.Biochem J 333, 223-232. |
[11] | Gibala M, Kicia M, Sakamoto W, Gola EM, Kubrakiewicz J, Smakowska E, Janska H (2009). The lack of mitochondrial AtFtsH4 protease alters Arabidopsis leaf morphology at the late stage of rosette development under short-day photoperiod.Plant J 59, 685-699. |
[12] | Guo Y, Gan SS (2012). Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments.Plant Cell Environ 35, 644-655. |
[13] | He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu LJ, Gong Z (2012). DEXH box RNA helicase- mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling.Plant Cell 24, 1815-1833. |
[14] | Hou K, Wu W, Gan SS (2013). SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis.Plant Physiol 161, 1002-1009. |
[15] | Huang YC, Chang YL, Hsu JJ, Chuang HW (2008). Trans- criptome analysis of auxin-regulated genes of Arabidopsis thaliana. Gene 420, 118-124. |
[16] | Jibran R, Hunter DA, Dijkwel PP (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals.Plant Mol Biol 82, 547-561. |
[17] | Joo JH, Bae YS, Lee JS (2001). Role of auxin-induced reactive oxygen species in root gravitropism.Plant Physiol 126, 1055-1060. |
[18] | Kant S, Bi YM, Zhu T, Rothstein SJ (2009). SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice.Plant Physiol 151, 691-701. |
[19] | Kato Y, Miura E, Ido K, Ifuku K, Sakamoto W (2009). The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen sp- ecies.Plant Physiol 151, 1790-1801. |
[20] | Kim JI, Murphy AS, Baek D, Lee SW, Yun DJ, Bressan RA, Narasimhan ML (2011). YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence inArabidopsis thaliana. J Exp Bot 62, 3981-3992. |
[21] | Kolodziejczak M, Kolaczkowska A, Szczesny B, Urantowka A, Knorpp C, Kieleczawa J, Janska H (2002). A higher plant mitochondrial homologue of the yeast m-AAA protease-molecular cloning, localization, and putative func- tion.J Biol Chem 277, 43792-43798. |
[22] | Kovtun Y, Chiu WL, Tena G, Sheen J (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants.Proc Natl Acad Sci USA 97, 2940-2945. |
[23] | Li Z, Peng J, Wen X, Guo H (2012). Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence.J Integr Plant Biol 54, 526-539. |
[24] | Lim PO, Kim HJ, Nam HG (2007). Leaf senescence.Annu Rev Plant Biol 58, 115-136. |
[25] | Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010). Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity.J Exp Bot 61, 1419-1430. |
[26] | Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002). Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 49, 249-272. |
[27] | Malnoe A, Wang F, Girard-Bascou J, Wollman FA, de Vitry C (2014). Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions.Plant Cell 26, 373-390. |
[28] | Meudt WJ, Gaines TP (1967). Studies on the oxidation of indole-3-acetic acid by peroxidase enzymes. I. Colorimetric determination of indole-3-acetic acid oxidation produ- cts.Plant Physiol 144, 118-128. |
[29] | Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breu- segem F (2011). ROS signaling: the new wave?Trends Plant Sci 16, 300-309. |
[30] | Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006). A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis.J Biol Chem 281, 38697-38704. |
[31] | Nolden M, Ehses S, Koppen M, Bernacchia A, Rugarli EI, Langer T (2005). The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria.Cell 123, 277-289. |
[32] | Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007). ARF7 and ARF19 regulate lateral root formation via direct activation ofLBD/ASL genes in Arabidopsis. Pla- nt Cell 19, 118-130. |
[33] | Piechota J, Kolodziejczak M, Juszczak I, Sakamoto W, Janska H (2010). Identification and characterization of high molecular weight complexes formed by matrix AAA proteases and prohibitins in mitochondria ofArabidopsis thaliana. J Biol Chem 285, 12512-12521. |
[34] | Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007). Stress-induced morphogenic responses: growing out of trouble?Trends Plant Sci 12, 98-105. |
[35] | Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakiere B, Vanacker H, Miginiac-Maslow M, Van Breusegem F, Noctor G (2007). Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2- induced cell death. Plant J 52, 640-657. |
[36] | Ren G, Zhou Q, Wu S, Zhang Y, Zhang L, Huang J, Sun Z, Kuai B (2010). Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis.J Integr Plant Biol 52, 496-504. |
[37] | Romano CP, Robson PR, Smith H, Estelle M, Klee H (1995). Transgene-mediated auxin overproduction in Ara- bidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resis- tant mutants.Plant Mol Biol 27, 1071-1083. |
[38] | Sakamoto W, Tamura T, Hanba-Tomita Y, Murata M (2002). The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles.Genes Cells 7, 769-780. |
[39] | Salleh FM, Evans K, Goodall B, Machin H, Mowla SB, Mur LA, Runions J, Theodoulou FL, Foyer CH, Rogers HJ (2012). A novel function for a redox-related LEA protein (SAG21/AtLEA5) in root development and biotic stress re- sponses.Plant Cell Environ 35, 418-429. |
[40] | Savitsky PA, Gazaryan IG, Tishkov VI, Lagrimini LM, Ruzgas T, Gorton L (1999). Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specifi- city for the enzyme structure.Biochem J 340, 579-583. |
[41] | Sierla M, Rahikainen M, Salojarvi J, Kangasjarvi J, Kangasjarvi S (2013). Apoplastic and chloroplastic redox signaling networks in plant stress responses.Antioxid Re- dox Signal 18, 2220-2239. |
[42] | Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011). Respiratory burst oxidases: the engines of ROS signaling.Curr Opin Plant Biol 14, 691-699. |
[43] | Wagner R, Aigner H, Pruzinska A, Jankanpaa HJ, Jansson S, Funk C (2011). Fitness analyses of Arabidopsis thaliana mutants depleted of FtsH metalloproteases and characterization of three FtsH6 deletion mutants exposed to high light stress, senescence and chilling. New Phytol 191, 449-458. |
[44] | Wang P, Song CP (2008). Guard-cell signaling for hydrogen peroxide and abscisic acid.New Phytol 178, 703-718. |
[45] | Watanabe M, Balazadeh S, Tohge T, Erban A, Giavalisco P, Kopka J, Mueller-Roeber B, Fernie AR, Hoefgen R (2013). Comprehensive dissection of spatiotemporal meta- bolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis.Plant Physiol 162, 1290-1310. |
[46] | Woodward AW, Bartel B (2005). Auxin: regulation, action, and interaction.Ann Bot 95, 707-735. |
[47] | Xu F, Meng T, Li P, Yu Y, Cui Y, Wang Y, Gong Q, Wang NN (2011). A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethyle- ne.Plant Physiol 157, 2131-2153. |
[48] | Yuan HM, Liu WC, Jin Y, Lu YT (2013). Role of ROS and auxin in plant response to metal-mediated stress.Plant Signal Behav 8, e24671. |
[49] | Zentgraf U, Laun T, Miao Y (2010). The complex regulation of WRKY53 during leaf senescence of Arabidopsis thali- ana.Eur J Cell Biol 89, 133-137. |
[50] | Zhang S, Wu J, Yuan D, Zhang D, Huang Z, Xiao L, Yang C (2014). Perturbation of auxin homeostasis caused by mitochondrial FtSH4 gene-mediated peroxidase accumulation regulates Arabidopsis architecture.Mol Plant 7, 856-873. |
[51] | Zhang S, Li C, Wang R, Chen Y, Shu S, Huang R, Zhang D, Xiao S, Yao N, Li J, Yang CW (2017). The mitochondrial protease FtSH4 regulates leaf senescence via WRKY- dependent salicylic acid signal.Plant Physiol 173, 2294-2307. |
[52] | Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006). Senescence-specific regulation of catalases in Arabidopsis thaliana(L.) Heynh. Plant Cell Environ 29, 1049-1060. |
/
〈 | 〉 |