研究报告

胞质雄性不育系冀2658A细胞质对陆地棉主要性状的影响

展开
  • 河北省农林科学院棉花研究所, 农业部黄淮海半干旱区棉花生物学与遗传育种重点实验室 国家棉花改良中心河北分中心, 石家庄 050051

收稿日期: 2016-06-12

  录用日期: 2016-11-11

  网络出版日期: 2017-07-10

基金资助

河北省农林科学院项目(No;A2015070106)和河北省科技计划(No.16226321D)

Effect of Cytoplasmic Male Sterility on Main Characters of Cotton

Expand
  • Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture, National Cotton Improvement Center Hebe National Cotton Improvement Center Hebei Branch, Cotton Research Institute of Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China

Received date: 2016-06-12

  Accepted date: 2016-11-11

  Online published: 2017-07-10

摘要

利用棉花(Gossypium hirsutum)雄性不育不仅可以培育优质的杂交种, 还能提高棉花制种效率并降低制种成本。该研究以冀2658系及其同核异质不育系冀2658A为母本, 以6个恢复系为父本配制12个杂交组合。利用F1代研究棉花细胞质对棉花农艺性状、抗病性、种子中粗脂肪和粗蛋白含量、纤维品质及产量性状的影响。结果表明, 冀2658A的细胞质主要影响棉花杂交种F1代的产量相关性状、黄萎病抗性及棉籽粗脂肪含量等, 表现为衣分显著降低(比对照组低1.61%), 黄萎病抗性增强(黄萎病指数比对照组低18.29%), 棉籽中的粗脂肪含量降低(比对照组低2.88%)。该研究初步探讨了胞质不育型细胞质对陆地棉主要性状的影响, 为陆地棉胞质雄性不育系的利用提供了理论参考。

本文引用格式

赵存鹏, 王兆晓, 王凯辉, 刘素恩, 耿军义, 郭宝生 . 胞质雄性不育系冀2658A细胞质对陆地棉主要性状的影响[J]. 植物学报, 2017 , 52(5) : 560 -567 . DOI: 10.11983/CBB16129

Abstract

The use of a cotton cytoplasmic male sterility (CMS) line can lead to breeding high-quality cotton seeds and also improve the efficiency of the preparation and decrease the cost of seed production. This study used the JI 2658 and JI 2658A cotton lines, which have the same nuclear background but different cytoplasm as female parents, with another six restorer lines as the male parent; 12 crosses were made according to one-to-one correspondence. The F1 hybrids were used to study the cotton cytoplasmic effects on agronomic traits, disease resistance, fat and protein content, fiber quality and yield. The CMS cytoplasm effects of the 2658A line on cotton hybrids mainly involve lint yield, verticillium wilt resistance and fat content-related characters. As compared with controls, crosses showed reduced lint yield and fat content of seeds by 1.61% and 2.88% and verticillium wilt resistant increased by 18.29%. These results are preliminary in understanding the CMS cytoplasm effects on upland cotton and will be important for using upland cotton CMS.

[an error occurred while processing this directive]

参考文献

[1] 卞云龙, 邓德祥, 王益军, 张勇, 蒋守华 (2005). 雄性不育细胞质对玉米自交系产量性状的影响. 扬州大学学报(农业与生命科学版) 26(4), 67-69.
[2] 蔡善信 (1997). 水稻雄性不育细胞质对杂种一代的影响. 华南农业大学学报 18, 81-85.
[3] 程计华, 李云昌, 梅德圣, 胡琼 (2006). 几种农作物细胞质雄性不育恢复基因的定位和分子标记研究进展. 植物学通报 23, 613-624.
[4] 程宁辉, 高燕萍, 杨金水, 钱旻吴, 葛扣麟 (1997). 水稻杂种一代与亲本幼苗基因表达差异的分析. 植物学报 39, 379-382.
[5] 葛玉彬, 陈炳东, 卯旭辉, 贾秀苹 (2013). 油用向日葵主要经济性状遗传及其相关分析. 中国油料作物学报 35, 515-523.
[6] 郭宝生, 刘素恩, 王兆晓, 耿军义, 崔瑞敏, 刘存敬, 张建宏, 张香云, 付会期 (2010). 高产优质“三系”杂交棉品种冀FRH3018的选育. 河北农业科学 14(7), 63-65.
[7] 郭三堆, 张锐, 王远 (2007). 三系棉遗传基础研究及育种进展. 农业科技通讯 (12), 11-12.
[8] 郭旺珍, 张天真, 潘家驹, Kohel RJ (1997). 棉花胞质雄性不育育性恢复基因的RAPD-PCR标记筛选. 科学通报 42, 2645-2647.
[9] 韩宗福, 王景会, 申贵芳, 赵逢涛, 王宗文, 李汝忠 (2011). 棉花质核互作雄性不育与育性恢复的研究及利用现状. 中国农业大学学报 16(3), 36-41.
[10] 景忆莲, 刘耀斌, 李胄, 范万法 (2004). 哈克尼西棉细胞质对陆地棉主要经济性状的影响. 中国农学通报 20(4), 117-118, 141.
[11] 李成奇 (2004). 棉花晋A细胞质雄性不育系的遗传背景分析及杂种优势研究. 硕士论文. 太谷: 山西农业大学. pp. 17-19.
[12] 刘耀斌, 景忆莲, 范万法, 校百才 (1996). 哈克尼西棉细胞质对陆地棉主要经济性状的影响. 西北农业学报 5(3), 49-53.
[13] 马维军, 任爱民 (2010). 转基因三系杂交棉邯杂301丰产性分析. 河北农业科学 14(9), 94-95.
[14] 彭婧, 巩振辉, 黄炜, 李大伟, 陈儒钢, 逯明辉 (2010). 辣椒雄性不育材料H9A小孢子败育机理. 植物学报 45, 44-51.
[15] 祁显涛, 杨海龙, 谢传晓 (2014). 玉米雄性不育机制及其产业化应用研究进展. 作物杂志 (6), 1-9.
[16] 石雅丽, 张锐, 任茂智, 孟志刚, 周焘, 孙国清, 孟钊红, 郭三堆 (2013). 棉花雄性不育的研究进展. 生物技术进展 3, 328-335.
[17] 王学德, 张天真, 潘家驹 (1998). 细胞质雄性不育棉花小孢子发生的细胞学观察和线粒体DNA的RAPD分析. 中国农业科学 31(2), 70-77.
[18] 王学德, 李悦有 (2002). 细胞质雄性不育棉花的转基因恢复系的选育. 中国农业科学 35, 137-141.
[19] 韦贞国, 李宗友, 易先达, 华金平 (1995). 哈克尼西棉雄性不育胞质的遗传效应. 棉花学报 7(2), 76-81.
[20] 吴豪, 徐虹, 刘振兰, 刘耀光 (2007). 植物细胞质雄性不育及其育性恢复的分子基础. 植物学通报 24, 399-413.
[21] 肖松华, 刘剑光, 吴巧娟, 狄佳春, 许乃银, 陈旭升 (2008). 棉花细胞质雄性不育与育性恢复的研究与利用. 江西农业学报 20(9), 8-15.
[22] 邢朝柱, 郭立平, 吴建勇, 戚廷香, 王海林, 乔秀芹, 唐会妮 (2012). 转基因抗虫三系杂交棉——中棉所83. 中国棉花 39(7), 39.
[23] 詹克慧, 赵鹏, 吕德彬, 范平, 马素芹 (2004). K型细胞质对普通小麦主要性状的影响. 华北农学报 19(2), 57-61.
[24] 张天真, 靖深蓉, 金林 (1998). 杂种棉选育的理论与实践. 北京: 科学技术出版社. pp. 64-67.
[25] 邹学校, 侯喜林, 刘荣云, 张竹青, 马艳青 (2004). 辣椒细胞质雄性不育基因对不育系及杂交一代农艺性状和生化特性的影响. 园艺学报 31, 732-736.
[26] Chase CD (2007). Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions.Tren- ds Genet 23, 81-90.
[27] Kazama T, Itabashi E, Fujii S, Nakamura T, Toriyama K (2016). Mitochondrial ORF79 levels determine pollen abortion in cytoplasmic male sterile rice.Plant J 85, 707-716.
[28] Lei BB, Li SS, Liu GZ, Chen ZW, Su AG, Li PB, Li ZH, Hua JP (2013). Evolution of mitochondrial gene content: loss of genes, tRNAs and introns between Gossypium harknessii and other plants.Plant Syst Evol 299, 1889-1997.
[29] Li FG, Fan GY, Wang KB, Sun FM, Yuan YL, Song GL, Li Q, Ma ZY, Lu CR, Zou CS, Chen WB, Liang XM, Shang HH, Liu WQ, Shi CC, Xiao GH, Gou CY, Ye WW, Xu X, Zhang XY, Wei HL, Li ZF, Zhang GY, Wang JY, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SX (2014). Genome sequence of the cultivated cottonGossypium arboreum. Nat Genet 46, 567-574.
[30] Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCau- ley DE, Palmer JD, Taylor DR (2012). Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates.PLoS Biol 10, e1001241.
[31] Suzuki H, Yu JW, Ness SA, O'Connell MA, Zhang JF (2013). RNA editing events in mitochondrial genes by ultra-deep sequencing methods: a comparison of cytoplas- mic male sterile, fertile and restored genotypes in cotton.Mol Genet Genomics 288, 445-457.
[32] Wang F, Feng CD, O’Connell MA, Stewart JM, Zhang JF (2010). RFLP analysis of mitochondrial DNA in two cytoplasmic male sterility systems (CMS-D2 and CMS-D8) of cotton.Euphytica 172, 93-99.
[33] Wang KB, Wang ZW, Li FG, Ye WW, Wang JY, Song GL, Yue Z, Cong L, Shang HH, Zhu SL, Zou CS, Li Q, Yuan YL, Lu CR, Wei HL, Gou CY, Zheng ZQ, Yin Y, Zhan XY, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SX (2012). The draft genome of a diploid cottonGossypium raimondii. Nat Genet 44, 1098-1103.
[34] Wu JY, Gong YC, Cui MH, Qi TX, Guo LP, Zhang JF, Xing CZ (2011). Molecular characterization of cytoplasmic male sterility conditioned by Gossypium harknessii cytoplasm (CMS-D2) in upland cotton.Euphytica 181, 17-29.
[35] Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, Zhang JB, Saski CA, Scheffler BE, Stelly DM, Hulse- Kemp AM, Wan Q, Liu BL, Liu CX, Wang S, Pan MQ, Wang YK, Wang DW, Ye WX, Chang LJ, Zhang WP, Song QX, Kirkbride RC, Chen XY, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu XY, Zhang H, Wu HT, Zhou L, Mei GF, Chen SQ, Tian Y, Xiang D, Li XH, Ding J, Zuo QY, Tao LN, Liu YC, Li J, Lin Y, Hui YY, Cao ZS, Cai CP, Zhu XF, Jiang Z, Zhou BL, Guo WZ, Li RQ, Chen ZJ (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement.Nat Biotechnol 33, 531-537.
[36] Zhu YX, Li FG (2013). The Gossypium raimondii genome, a huge leap forward in cotton genomics.J Integr Plant Biol 55, 570-571.
文章导航

/

[an error occurred while processing this directive]