专题论坛

工程纳米材料调控植物生长和抗逆性的机理研究进展

  • 韩文昊 ,
  • 王延平
展开
  • 山东农业大学林学院, 泰安 271018

收稿日期: 2025-07-16

  修回日期: 2025-09-18

  网络出版日期: 2025-10-22

基金资助

国家自然科学基金面上项目(No.32471850)和山东省重大科技创新示范项目(No.2021SFGC020503)

Research Advances in Engineering Nanomaterials for Regulating Plant Growth and Inducing Stress Resistance

  • HAN Wen-Hao ,
  • YU Yan-Beng
Expand
  • School of Forestry, Shandong Agricultural University, Taian 271018, China

Received date: 2025-07-16

  Revised date: 2025-09-18

  Online published: 2025-10-22

摘要

工程纳米材料凭借其独特的结构属性及电化学性质日益受到关注, 已被广泛应用于促进植物体生长发育、提高作物产量及增强幼苗抗逆性等方面。为全面了解工程纳米材料对植物生长及其抗逆性的影响和调控机制, 该文聚焦于常用工程纳米材料(主要包括碳基、金属基、金属氧化物和量子点), 系统综述了纳米材料进入植物体的途径及其在植物体内的转运方式; 纳米材料在植物各个生长阶段、组织部位和生理过程中产生的效应; 以及在不同胁迫环境(干旱、盐渍化和重金属离子富集)下应用工程纳米材料对植物产生的影响, 特别是诱导植物产生抗逆性的机理。探讨了工程纳米材料在提升植物应对非生物胁迫环境能力等方面的应用潜能, 有利于深入了解纳米材料作为一类新兴材料在农林领域发展的必要性和潜力, 为未来工程纳米材料的规模化应用提供参考。


本文引用格式

韩文昊 , 王延平 . 工程纳米材料调控植物生长和抗逆性的机理研究进展[J]. 植物学报, 0 : 1 -0 . DOI: 10.11983/CBB25124

Abstract

Engineering nanomaterials (ENMs) have garnered significant attention due to their unique structural and electrochemical properties. Their extensive application has demonstrated effectiveness in promoting plant growth, increasing crop yields, and enhancing seedling stress resistance. To comprehensively elucidate the mechanism underlying ENMs impact on plant growth and stress resilience, this review focuses on common ENMs (including carbon-based, metal-based, metal oxides, and quantum dots). We systematically summarize: the pathway for ENMs uptake by plants and their translocation within plant tissues; the effects of ENMs on plant developmental stages, tissue locations, and physiological processes; and the influence of ENMs application under different stress conditions (e.g., drought, salinity, heavy metal contamination), particularly the mechanisms underlying induced stress resistance. This review offers an in-depth analysis of the potential applications of ENMs in enhancing plant tolerance to abiotic stresses. By elucidating the mechanisms through which ENMs mitigate stress impacts, it advances understanding of the necessity and transformative potential as innovative tools in agricultural and forestry development, thereby offering valuable insights for future large-scale implementation.

参考文献

[1] 毕毓芳,王安可,翟志忠,王玉魁 (2016).纳米材料对林木生长发育影响及其在林木生物学上的应用.世界林业研究,29:19-23.
[2] 陈娟妮,朱云松,宋锟,丁伟 (2023).工程纳米材料对高等植物生长影响的研究进展.植物学报,58(05):813-830.
[3] 陈思远,鲁尧,武思凡,齐咏冰,郑青松,张馨月,赵文甲,陈军(2014).纳米级Fe3O4分散液浸种对NaCl胁迫下番茄种子萌发及幼苗保护酶系统的影响[J].土壤学报, 61(04):1166-1178.
[4] 陈明辉,焦思倩,范建敏,耿喜宁,谢丽华,程世平(2023).纳米二氧化硅对干旱胁迫下粗糠树影响的生理和转录分析[J].分子植物育种,1-18[2025-05-20].
[5] 刘榆,傅瑞琪,楼子墨,方文哲,王卓行,徐新华(2015).功能化碳质材料的制备及其对水中重金属的去除[J].化学进展, 27(11):1665-1678.
[6] 刘晨,许业洲,杜超群,刘乐平,吴楚(2020).SiO2纳米颗粒对杉木幼苗生长发育的影响[J].中南林业科技大学学报, 40(04):34-43.
[7] 刘珏文,李燕辉,杨天旭,戚杰,陈琳琳,吴洪洪(2023).CeO2纳米颗粒调控活性氧稳态和一氧化氮水平提高水稻耐旱能力[J].中国生物化学与分子生物学报, 39(07):991-999.
[8] 刘文清,李金娜,于冰(2025).TiO2纳米颗粒处理下甜菜幼苗光合特性的初步研究[J].黑龙江大学自然科学学报, 42(01):63-73.
[9] 秦中维,魏茜雅,梁腊梅,林欣琪,李映志(2024).氧化铈纳米颗粒引发处理对盐胁迫下辣椒植株生长、生理特性及相关耐盐基因表达的影响[J].江苏农业学报, 40(09):1719-1730.
[10] 苏家仪,阎星宇,许文成,王嘉伟,张超,梁志军,刘静(2025).氧化铜纳米颗粒在砷镉联合胁迫下对水稻发芽和幼苗生长的影响[J].生态毒理学报,20(02):385-395.
[11] 尤沛,何学青(2020).种子纳米引发的研究进展[J].草业科学,37(08):1548-1557.
[12] 王苗苗,强沥文,王伟,张克强,孙斌斌(2020).纳米二氧化钛对镉胁迫下小白菜毒性效应的影响[J].农业环境科学学报,39(06):1185-1195.
[13] 曾强,李辉,侯磊(2020).纳米TiO2暴露对湿地植物大薸和泽泻光合特征影响的差异[J].生态毒理学报,15(05):264-271.
[14] Ahmadi SZ, Zahedi B, Ghorbanpour M, Mumivand H (2024). Comparative morpho-physiological and biochemical responses of Capsicum annuum L. plants to multi-walled carbon nanotubes, fullerene C60 and graphene nanoplatelets exposure under water deficit stress. BMC Plant Biol. 24(1):116.
[15] Ali MH, Sobze JM, Pham TH, Nadeem M, Liu C, Galagedara L, Cheema M, Thomas R (2020). Carbon nanoparticles functionalized with carboxylic acid improved the germination and seedling vigor in upland boreal forest species. Nanomaterials. 10(1):176.
[16] Avellan A, Yun J, Zhang Y, Spielman-Sun E, Unrine JM, Thieme J, Li J, Lombi E, Bland G, Lowry GV (2019). Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS nano. May 10;13(5):5291-305.
[17] Cao Z, Zhou H, Kong L, Li L, Wang R, Shen W (2020). A novel mechanism underlying multi-walled carbon nanotube-triggered tomato lateral root formation: the involvement of nitric oxide. Nanoscale Res. Lett.15:1-0.
[18] Cervantes-Avilés P, Huang X, Keller AA (2021). Dissolution and aggregation of metal oxide nanoparticles in root exudates and soil leachate: Implications for nanoagrochemical application. Environ. Sci. Technol. 55(20):13443-51.
[19] Chavan S, Nadanathangam V (2019). Effects of nanoparticles on plant growth-promoting bacteria in Indian agricultural soil. Agronomy. 9(3):140.
[20] Chen F, Wang C, Yue L, Zhu L, Tang J, Yu X, Cao X, Schro?der P, Wang Z (2021). Cell walls are remodeled to alleviate nY2O3 cytotoxicity by elaborate regulation of de novo synthesis and vesicular transport. ACS nano. 15(8):13166-77.
[21] Chen X, Wang J, Wang R, Zhang D, Chu S, Yang X, Hayat K, Fan Z, Cao X, Ok YS, Zhou P (2022). Insights into growth-promoting effect of nanomaterials: using transcriptomics and metabolomics to reveal the molecular mechanisms of MWCNTs in enhancing hyperaccumulator under heavy metal (loid) s stress. J. Hazard. Mater. 439:129640.
[22] Chen S, Liu H, Yangzong Z, Gardea-Torresdey JL, White JC, Zhao L (2023). Seed priming with reactive oxygen species-generating nanoparticles enhanced maize tolerance to multiple abiotic stresses. Environ. Sci. Technol. 57(48):19932-41.
[23] Chen X, Chu S, Chi Y, Wang J, Wang R, You Y, Hayat K, Khalid M, Zhang D, Zhou P, Jiang J (2023). Unraveling the role of multi-walled carbon nanotubes in a corn-soil system: Plant growth, oxidative stress and heavy metal (loid) s behavior. Plant Physiol. Biochem. 200:107802.
[24] Chen LL, Zhu L, Cheng HL, Xu WY, Li GJ, Zhang YQ, Gu JJ, Chen L, Xie ZL, Li ZH, Wu HH (2024). Negatively charged carbon dots employed symplastic and apoplastic pathways to enable better plant delivery than positively charged carbon dots. ACS nano, 18(34): 23154-23167.
[25] Chen S, Teng Y, Luo Y, Kuramae E, Ren W (2024). Threats to the soil microbiome from nanomaterials: a global meta and machine-learning analysis. Soil Biol. Biochem. 188:109248.
[26] Chen Z, Han M, Guo Z, Feng Y, Guo Y, Yan X (2024). An integration of physiology, transcriptomics, and proteomics reveals carbon and nitrogen metabolism responses in alfalfa (Medicago sativa L.) exposed to titanium dioxide nanoparticles. J. Hazard. Mater. 474:134851.
[27] Fernández V, Bahamonde HA, Javier Peguero-Pina J, Gil-Pelegrín E, Sancho-Knapik D, Gil L, Goldbach HE, Eichert T (2017). Physico-chemical properties of plant cuticles and their functional and ecological significance. J. Exp. Bot. 68(19):5293-306.
[28] Fu X, Bian D, Gu X, Cao J, Liu J (2023). Combination of graphene oxide and rhizobium improved soybean tolerance in saline-alkali stress. Agronomy. 13(6):1637.
[29] Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environ. Sci. Technol. 47(18):10645-52.
[30] Guirguis A, Yang W, Conlan XA, Kong L, Cahill DM, Wang Y (2023). Boosting plant photosynthesis with carbon dots: a critical review of performance and prospects. Small. 19(43):2300671.
[31] Guo S, Hu X, Wang Z, Yu F, Hou X, Xing B (2024). Zinc oxide nanoparticles cooperate with the phyllosphere to promote grain yield and nutritional quality of rice under heatwave stress. Proc. Natl. Acad. Sci. 121(46):e2414822121.
[32] Hassanpouraghdam MB, Mehrabani LV, Kheirollahi N, Soltanbeigi A, Khoshmaram L (2022). Foliar application of graphene oxide, Fe, and Zn on Artemisia dracunculus L. under salinity. Sci. Agric. 80: e20210202.
[33] Hofmann T, Lowry GV, Ghoshal S, Tufenkji N, Brambilla D, Dutcher JR, Gilbertson LM, Giraldo JP, Kinsella JM, Landry MP, Lovell W (2020). Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food. 1(7):416-25.
[34] Jing X, Liu Y, Liu X, Wang XF, You C, Chang D, Zhang S (2023). Nitrogen-doped carbon dots enhanced seedling growth and salt tolerance with distinct requirements of excitation light. RSC Adv. 13(18):12114-22.
[35] Joshi A, Kaur S, Singh P, Dharamvir K, Nayyar H, Verma G (2018). Tracking multi-walled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability. Appl Nanosci. 8:1399-414.
[36] Katti DR, Sharma A, Pradhan SM, Katti KS (2015). Carbon nanotube proximity influences rice DNA. Chem. Phys. 455:17-22.
[37] Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2017). Role of nanomaterials in plants under challenging environments. Plant Physiol. Biochem. 110:194-209.
[38] Kibbey TC, Strevett KA (2019). The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere. 221:703-7.
[39] Kurczyńska E, Godel-J?drychowska K, Sala K, Milewska-Hendel A (2021). Nanoparticles—plant interaction: what we know, where we are? Appl. Sci. 11(12):5473.
[40] Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013). Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl. Mater. Interfaces. 5(16):7965-73.
[41] Li G, Gao Q, Nyande A, Dong Z, Khan EH, Han Y, Wu H (2024). Cerium oxide nanoparticles promoted lateral root formation in Arabidopsis by modulating reactive oxygen species and Ca2+ level. Funct. Plant Biol. 51(10).
[42] Li M, Zhang P, Guo Z, Zhao W, Li Y, Yi T, Cao W, Gao L, Tian CF, Chen Q, Ren F (2024). Dynamic transformation of nano-MoS2 in a soil–plant system empowers its multifunctionality on soybean growth. Environ. Sci. Technol. 58(2):1211-22.
[43] Li P, Huang Y, Fu C, Jiang SX, Peng W, Jia Y, Peng H, Zhang P, Manzie N, Mitter N, Xu ZP (2021). Eco‐friendly biomolecule‐nanomaterial hybrids as next‐generation agrochemicals for topical delivery. EcoMat. 3(5): e12132.
[44] Liu D, Iqbal S, Gui H, Xu J, An S, Xing B (2023). Nano-iron oxide (Fe3O4) mitigates the effects of microplastics on a ryegrass soil–microbe–plant system. ACS nano. 17(24):24867-82.
[45] Lowry GV, Giraldo JP, Steinmetz NF, Avellan A, Demirer GS, Ristroph KD, Wang GJ, Hendren CO, Alabi CA, Caparco A, da Silva W (2024). Towards realizing nano-enabled precision delivery in plants. Nat. Nanotechnol. 19(9):1255-69.
[46] Luo X, Wang Z, Wang C, Yue L, Tao M, Elmer WH, White JC, Cao X, Xing B (2023). Nanomaterial size and surface modification mediate disease resistance activation in cucumber (Cucumis sativus). ACS nano. 17(5):4871-85.
[47] Martinez-Ballesta MC, Chelbi N, Lopez-Zaplana A, Carvajal M (2020). Discerning the mechanism of the multiwalled carbon nanotubes effect on root cell water and nutrient transport. Plant Physiol. Biochem. 146:23-30.
[48] McManus P, Hortin J, Anderson AJ, Jacobson AR, Britt DW, Stewart J, McLean JE (2018). Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: Influences on copper bioavailability and uptake. Environ. Toxicol. Chem. 37(10):2619-32.
[49] Mondal A, Basu R, Das S, Nandy P (2011). Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J. Nanopart. Res. 13:4519-28.
[50] Mohammadi H, Parviz L, Beyrami A, Anosheh-Bonab F, Ghorbanpour M (2024). Exposure to TiO2 nanoparticles (NPs) and zeolite stimulates growth, physiology, and phytochemical characteristics and elevates Mentha piperita L. tolerance to salinity stress. Ind. Crops Prod. 211:118228.
[51] Mousavi SM, Omidi H, Keshavarzi MH, Shojaei SH (2025). Recommendation of the Appropriate Treatments Using Carbon Nanotubes in Drought Stress Conditions in Maize Genotypes (Zea mays L) in Preliminary Study Based on Treatment× Trait. J. Plant Growth Regul. 1:1-2.
[52] Nile SH, Thiruvengadam M, Wang Y, Samynathan R, Shariati MA, Rebezov M, Nile A, Sun M, Venkidasamy B, Xiao J, Kai G (2022). Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. J. Nanobiotechnol. 20(1):254.
[53] Qiu P, Li J, Zhang L, Chen K, Shao J, Zheng B, Yuan H, Qi J, Yue L, Hu Q, Ming Y (2023). Polyethyleneimine-coated MXene quantum dots improve cotton tolerance to Verticillium dahliae by maintaining ROS homeostasis. Nat. Commun. 14(1):7392.
[54] Rakgotho T, Ndou N, Mulaudzi T, Iwuoha E, Mayedwa N, Ajayi RF (2022). Green-synthesized zinc oxide nanoparticles mitigate salt stress in Sorghum bicolor. Agriculture. 12(5):597.
[55] Santana I, Wu H, Hu P, Giraldo JP (2020). Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11(1), p.2045.
[56] Santana I, Jeon SJ, Kim HI, Islam MR, Castillo C, Garcia GF, Newkirk GM, Giraldo JP (2022). Targeted carbon nanostructures for chemical and gene delivery to plant chloroplasts. ACS nano. 16(8):12156-73.
[57] Sheikhalipour M, Mohammadi SA, Esmaielpour B, Spanos A, Mahmoudi R, Mahdavinia GR, Milani MH, Kahnamoei A, Nouraein M, Antoniou C, Kulak M (2023). Seedling nanopriming with selenium-chitosan nanoparticles mitigates the adverse effects of salt stress by inducing multiple defence pathways in bitter melon plants. Int. J. Biol. Macromol. 242:124923.
[58] Shi J, Xun M, Song J, Li J, Zhang W, Yang H (2023). Multi-walled carbon nanotubes promote the accumulation, distribution, and assimilation of 15N-KNO3 in Malus hupehensis by entering the roots. Front. Plant Sci. 14:1131978.
[59] Singh A, Rajput VD, Sharma R, Ghazaryan K, Minkina T (2023). Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environ Res 235, 116585.
[60] Singh Y, Kaushal S, Sodhi RS (2020). Biogenic synthesis of silver nanoparticles using cyanobacterium Leptolyngbya sp. WUC 59 cell-free extract and their effects on bacterial growth and seed germination. Nanoscale Adv 2, 3972-82.
[61] Song J, Luo N, Sang Y, Duan C, Cui X (2021). Graphene oxide affects growth and physiological indexes in Larix olgensis seedlings and the soil properties of Haplic Cambisols in Northeast China. Environ Sci Pollut Res 228, 20869-82.
[62] Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL (2014). Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution?. J Hazard Mater 280, 487-503.
[63] Tripathi S, Kapri S, Datta A, Bhattacharyya S (2016). Influence of the morphology of carbon nanostructures on the stimulated growth of gram plant. RSC Adv 6, 43864-73.
[64] Wang J, Cao X, Wang C, Chen F, Feng Y, Yue L, Wang Z, Xing B (2022). Fe-based nanomaterial-induced root nodulation is modulated by flavonoids to improve soybean (Glycine max) growth and quality. ACS nano 16, 21047-62.
[65] Wang Q, Chen J, Zhang H, Lu M, Qiu D, Wen Y, Kong Q (2011). Synthesis of water soluble quantum dots for monitoring carrier-DNA nanoparticles in plant cells. J Nanosci Nanotechnol 11, 2208-14.
[66] Wei H, Wang E (2013). Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42, 6060-93.
[67] Xin XP, Zhao FL, Judy JD, He Z (2022). Copper stress alleviation in corn (Zea mays L.): Comparative efficiency of carbon nanotubes and carbon nanoparticles. Nano Impact 25,100381.
[68] Xu Z, Liu H, Yu Y, Gao D, Leng C, Zhang S, Yan P (2023). MWCNTs Alleviated saline-alkali stress by optimizing photosynthesis and sucrose metabolism in rice seedling. Plant Signaling Behav 18, 2283357.
[69] Zhao G, Zhao Y, Lou W, Su J, Wei S, Yang X, Wang R, Guan R, Pu H, Shen W (2019). Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale 11, 10511-23.
[70] Zhang P, Jiang Y, Schwab F, Monikh FA, Grillo R, White JC, Guo Z, Lynch I (2024). Strategies for enhancing plant immunity and resilience using nanomaterials for sustainable agriculture. Environ Sci Technol 58, 9051-60.
[71] Zhang X, Cao H, Zhao J, Wang H, **ng B, Chen Z, Li X, Zhang J (2021). Graphene oxide exhibited positive effects on the growth of Aloe vera L. Physiol Mol Biol Plants 27, 815-24 .
[72] Zhao Z, Dai H, Wang G, Peng Y, Liao F, Wu J, Liang T (2024). Carbon nanoparticles promoted the absorption of potassium ions by tobacco roots via regulation of K+ flux and ion channel gene expression. Curr Nanosci 20, 390-8.
[73] Zhong X, Su G, Zeng Q, Li G, Xu H, Wu H, Zhou H, Zhou X (2023). Preparation of salicylic acid-functionalized nanopesticides and their applications in enhancing salt stress resistance. ACS Appl Mater Interfaces 15, 43282-93.
[74] Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL (2017). Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. Plant Physiol Biochem 110, 236-64.
文章导航

/