苔藓植物蛋白质组学研究进展

  • 虞健翔 ,
  • 蔡雯 ,
  • 陈心亦 ,
  • 刘烯烯 ,
  • 于茂桢 ,
  • 余灯雄 ,
  • 戴绍军 ,
  • 于晶
展开
  • 上海师范大学生命科学学院, 上海 200234

收稿日期: 2025-05-28

  修回日期: 2025-08-06

  网络出版日期: 2025-09-03

基金资助

上海市自然科学基金(No.21ZR1447400)

Research Progress in Bryophyte Proteomics

  • YU Jian-Xiang ,
  • SA Wen ,
  • CHEN Xin-Yi ,
  • LIU Xi-Xi ,
  • YU Mao-Zhen ,
  • YU Deng-Xiong ,
  • DAI Shao-Jun ,
  • YU Jing
Expand
  • College of Life Sciences, Shanghai Normal University, Shanghai 200234, China

Received date: 2025-05-28

  Revised date: 2025-08-06

  Online published: 2025-09-03

摘要

苔藓植物蛋白质组学的研究对于揭示植物适应陆地环境的分子机制具有重要意义。作为最早登陆的植物之一, 苔藓植物提供了一个独特的模型系统, 用于研究植物如何适应陆地环境的变化。通过蛋白质组学的方法, 我们可以深入了解苔藓植物在逆境响应、生长发育和进化过程中的分子机制, 这对于揭示植物适应性的演化历程和机制具有重要价值。此外, 苔藓植物蛋白质组学的研究也为植物科学研究提供了新的视角和工具, 有助于我们理解植物对环境变化的响应和适应策略。本文综述了苔藓植物蛋白质组学在非生物胁迫响应、生长发育调控、蛋白质修饰、细胞器功能、代谢过程与进化适应等方面的研究进展, 以及其在植物适应性研究中的重要性。

本文引用格式

虞健翔 , 蔡雯 , 陈心亦 , 刘烯烯 , 于茂桢 , 余灯雄 , 戴绍军 , 于晶 . 苔藓植物蛋白质组学研究进展[J]. 植物学报, 0 : 1 -0 . DOI: 10.11983/CBB25094

Abstract

Research on the proteomics of bryophytes is of great significance for revealing the molecular mechanisms of plant adaptation to terrestrial environments. As one of the earliest plants to colonize land, bryophytes provide a unique model system for studying how plants adapt to changes in terrestrial environments. Through proteomic approaches, we can gain in-depth insights into the molecular mechanisms underlying stress responses, growth and development, and evolutionary processes in bryophytes. This is of considerable value for elucidating the evolutionary history and mechanisms of plant adaptability. Furthermore, research on bryophyte proteomics offers new perspectives and tools for plant science, aiding our understanding of plant responses and adaptive strategies to environmental changes. This review summarizes recent advances in bryophyte proteomics, focusing on abiotic stress responses, growth and developmental regulation, protein modifications, organelle functions, metabolic processes, and evolutionary adaptations. It further highlights the significance of these findings in understanding plant adaptation mechanisms.

参考文献

[1]Amagai A, Honda Y, Ishikawa S, Hara Y, Kuwamura M, Shinozawa A, Sugiyama N, Ishihama Y, Takezawa D, Sakata Y, Shinozaki K, Umezawa T(2018).Phosphoproteomic profiling reveals ABA-responsive phosphosignaling pathways in Physcomitrella patens.Plant J, 94:699-708. [2]Chamorro-Flores A, Tiessen-Favier A, Gregorio-Jorge J, Villalobos-López M A, Guevara-García á A, López-Meyer M, Arroyo-Becerra A(2020).High levels of glucose alter Physcomitrella patens metabolism and trigger a differential proteomic response.PLoS One, 15:e0242919-e0242919. [3]Chen C, Hou J, Tanner J J, Cheng J(2020).Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis.Int J Mol Sci, 21:2873-2873. [4]Chen X, Wei S, Ji Y, Guo X, Yang F(2015).Quantitative proteomics using SILAC: Principles,applications,and developments.Proteomics, 15:3175-3192. [5]Cho S H, Hoang Q T, Kim Y Y, Shin H Y, Ok S H, Bae J M, Shin J S(2006).Proteome analysis of gametophores identified a metallothionein involved in various abiotic stress responses in Physcomitrella patens.Plant Cell Rep, 25:475-488. [6]Cruz D E C R, Bernardes D a S A, Soares R, Almeida A M, Coelho A V, Marques D a S J, Branquinho C(2014).Differential proteomics of dehydration and rehydration in bryophytes: evidence towards a common desiccation tolerance mechanism.Plant Cell Environ, 37:1499-1515. [7]Cui S, Hu J, Guo S, Wang J, Cheng Y, Dang X, Wu L, He Y(2012).Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration.J Exp Bot., 63:711-726. [8]Decker E L, Reski R(2020).Mosses in biotechnology.Curr Opin Biotechnol, 61:21-27. [9]Fernandez-Pozo N, Haas F B, Gould S B, Rensing S A(2022).An overview of bioinformatics,genomics,and transcriptomics resources for bryophytes.J Exp Bot, 73:4291-4305. [10]Fr?hlich K, Fahrner M, Brombacher E, Seredynska A, Maldacker M, Kreutz C, Schmidt A, Schilling O(2024).Data-Independent Acquisition: A Milestone and Prospect in Clinical Mass Spectrometry-Based Proteomics.Mol Cell Proteomics, 23:100800-100800. [11]Guihur A, Fauvet B, Finka A, Quadroni M, Goloubinoff P(2021).Quantitative proteomic analysis to capture the role of heat-accumulated proteins in moss plant acquired thermotolerance.Plant Cell Environ, 44:2117-2133. [12]Heidari P, Rezaee S, Hosseini Pouya H S, Mora-Poblete F(2024).Insights into the Heat Shock Protein 70 (Hsp70) Family in Camelina sativa and Its Roles in Response to Salt Stress.Plants (Basel), 13:3410-3410. [13]Heintz D, Erxleben A, High A A, Wurtz V, Reski R, Van Dorsselaer A, Sarnighausen E(2006).Rapid alteration of the phosphoproteome in the moss Physcomitrella patens after cytokinin treatment.J Proteome Res., 5:2283-2293. [14]Hembach L, Niemeyer P W, Schmitt K, Zegers J M S, Scholz P, Brandt D, Dabisch J J, Valerius O, Braus G H, Schwarzl?nder M, De Vries J, Rensing S A, Ischebeck T(2024).Proteome plasticity during Physcomitrium patens spore germination - from the desiccated phase to heterotrophic growth and reconstitution of photoautotrophy.Plant J, 117:1466-1486. [15]Hoernstein S N, Mueller S J, Fiedler K, Schuelke M, Vanselow J T, Schuessele C, Lang D, Nitschke R, Igloi G L, Schlosser A, Reski R(2016).Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens.Mol Cell Proteomics, 15:1808-1822. [16]Hoernstein S N W, Fode B, Wiedemann G, Lang D, Niederkrüger H, Berg B, Schaaf A, Frischmuth T, Schlosser A, Decker E L, Reski R(2018).Host Cell Proteome of Physcomitrella patens Harbors Proteases and Protease Inhibitors under Bioproduction Conditions.J Proteome Res, 17:3749-3760. [17]Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, Sheng X, Zhao F, Chen Z, Ding Y, Yuan H, Wu X, Xing S, Yan X, Bao F, Wan P, Xiao L, Wang X, Xiao W, Decker E L, Van Gessel N, Renault H, Wiedemann G, Horst N A, Haas F B, Wilhelmsson P K I, Ullrich K K, Neumann E, Lv B, Liang C, Du H, Lu H, Gao Q, Cheng Z, You H, Xin P, Chu J, Huang C-H, Liu Y, Dong S, Zhang L, Chen F, Deng L, Duan F, Zhao W, Li K, Li Z, Li X, Cui H, Zhang Y E, Ma C, Zhu R, Jia Y, Wang M, Hasebe M, Fu J, Goffinet B, Ma H, Rensing S A, Reski R, He Y(2023).Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet.Cell., 186:3558-3576. [18]Hung C W, Tholey A(2012).Tandem mass tag protein labeling for top-down identification and quantification.Anal Chem, 84:161-170. [19]Jain A, Singh H B, Das S(2021).Deciphering plant-microbe crosstalk through proteomics studies.Microbiological Research, 242:126590-126590. [20]Kolkas H, Balliau T, Chourré J, Zivy M, Canut H, Jamet E(2021).The Cell Wall Proteome of Marchantia polymorpha Reveals Specificities Compared to Those of Flowering Plants.Front Plant Sci, 12:765846-765846. [21]Krasny L, Huang P H(2021).Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology.Mol Omics, 17:29-42. [22]Lang E G, Mueller S J, Hoernstein S N, Porankiewicz-Asplund J, Vervliet-Scheebaum M, Reski R(2011).Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for sub-cellular proteomics.Plant Cell Rep, 30:205-215. [23]Li X, Yang R, Liang Y, Gao B, Li S, Bai W, Oliver M J, Zhang D(2023).The ScAPD1-like gene from the desert moss Syntrichia caninervis enhances resistance to Verticillium dahliae via phenylpropanoid gene regulation.Plant J, 113:75-91. [24]Lueth V M, Reski R(2023).Mosses.Curr Biol, 33:R1175-R1181. [25]Luo W, Komatsu S, Abe T, Matsuura H, Takahashi K(2020).Comparative Proteomic Analysis of Wild-Type Physcomitrella Patens and an OPDA-Deficient Physcomitrella Patens Mutant with Disrupted PpAOS1 and PpAOS2 Genes after Wounding.Int J Mol Sci, 21:1417-1417. [26]Mann M, Kumar C, Zeng W F, Strauss M T(2021).Artificial intelligence for proteomics and biomarker discovery.Cell Syst, 12:759-770. [27]Mergner J, Kuster B(2022).Plant Proteome Dynamics.Annu Rev Plant Biol, 73:67-92. [28]Mueller S J, Lang D, Hoernstein S N, Lang E G, Schuessele C, Schmidt A, Fluck M, Leisibach D, Niegl C, Zimmer A D, Schlosser A, Reski R(2014).Quantitative analysis of the mitochondrial and plastid proteomes of the moss Physcomitrella patens reveals protein macrocompartmentation and microcompartmentation.Plant Physiol, 164:2081-2095. [29]Panteli? A, Stevanovi? S, Komi? S M, Kilibarda N, Vidovi? M(2022).In Silico Characterisation of the Late Embryogenesis Abundant (LEA) Protein Families and Their Role in Desiccation Tolerance in Ramonda serbica Panc.Int J Mol Sci, 23:3547-3547. [30]Peng Y, Ma T, Wang X, Zhang M, Xu Y, Wei J, Sha W, Li J(2023).Proteomic and Transcriptomic Responses of the Desiccation-Tolerant Moss Racomitrium canescens in the Rapid Rehydration Processes.Genes (Basel), 14:390-390. [31]Rensing S A, Goffinet B, Meyberg R, Wu S Z, Bezanilla M(2020).The Moss Physcomitrium (Physcomitrella) patens: A Model Organism for Non-Seed Plants.Plant Cell, 32:1361-1376. [32]Santos H M, Lodeiro C, Capelo J L(2020).Label-free quantification and post-translational modifications.J Proteomics, 229:103962-103962. [33]Sarnighausen E, Wurtz V, Heintz D, Van Dorsselaer A, Reski R(2004).Mapping of the Physcomitrella patens proteome.Phytochemistry, 65:1589-1607. [34]Unwin R D, Griffiths J R, Whetton A D(2010).Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MSMS.Nat Protoc, 5:1574-1582. [35]Urban P L(2016).Quantitative mass spectrometry: an overview.Philos Trans A Math Phys Eng Sci, 374:20150382-20150382. [36]Wadhwa N, Singh D, Yadav R, Kapoor S, Kapoor M(2023).Role of TRDMT1/DNMT2 in stress adaptation and its influence on transcriptome and proteome dynamics under osmotic stress in Physcomitrium patens.Physiol Plant, 175:e14014-e14014. [37]Wang X, Chen L, Yang A, Bu C, He Y(2017).Quantitative Proteomics Analysis of Developmental Reprogramming in Protoplasts of the Moss Physcomitrella patens.Plant Cell Physiol, 58:946-961. [38]Wang X, Kuang T, He Y(2010).Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis.BMC Plant Biol, 10:192-192. [39]Wang X, Qi M, Li J, Ji Z, Hu Y, Bao F, Mahalingam R, He Y(2014).The phosphoproteome in regenerating protoplasts from Physcomitrella patens protonemata shows changes paralleling postembryonic development in higher plants.J Exp Bot, 65:2093-2106. [40]Wang X, Yang P, Gao Q, Liu X, Kuang T, Shen S, He Y(2008).Proteomic analysis of the response to high-salinity stress in Physcomitrella patens.Planta, 228:167-177. [41]Wang X, Yang P, Zhang X, Xu Y, Kuang T, Shen S, He Y(2009).Proteomic analysis of the cold stress response in the moss,Physcomitrella patens.Proteomics, 9:4529-4538. [42]Wang X, Zhou S, Chen L, Quatrano R S, He Y(2014).Phospho-proteomic analysis of developmental reprogramming in the moss Physcomitrella patens.J Proteomics, 108:284-294. [43]Wang X Q, Yang P F, Liu Z, Liu W Z, Hu Y, Chen H, Kuang T Y, Pei Z M, Shen S H, He Y K(2009).Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy.Plant Physiol, 149:1739-1750. [44]Yan K, Ablimit M, Liu S, Liu Z, Wang Y(2023).A novel metallothionein gene HcMT from halophyte shrub Halostachys caspica respond to cadmium and sodium stress.Plant Physiol Biochem, 201:107763-107763. [45]Yasui Y, Tsukamoto S, Sugaya T, Nishihama R, Wang Q, Kato H, Yamato K T, Fukaki H, Mimura T, Kubo H, Theres K, Kohchi T, Ishizaki K(2019).GEMMA CUP-ASSOCIATED MYB1,an Ortholog of Axillary Meristem Regulators,Is Essential in Vegetative Reproduction in Marchantia polymorpha.Curr Biol, 29:3987-3995. [46]Yu X, Liu Z, Sun X(2023).Single-cell and spatial multi-omics in the plant sciences: Technical advances, applications, and perspectives.Plant Commun, 4:100508-100508. [47]Yu Z, Ni J, Sheng W, Wang Z, Wu Y(2017).Proteome-wide identification of lysine 2-hydroxyisobutyrylation reveals conserved and novel histone modifications in Physcomitrella patens.Sci Rep, 7:15553-15553. [48]Zhang G-L, Feng C, Kou J, Han Y, Zhang Y, Xiao H-X(2023).Phylogeny and divergence time estimation of the genus Didymodon (Pottiaceae) based on nuclear and chloroplast markers.Journal of Systematics and Evolution, 61:115-126. [49]Zhang Y, Berman A, Shani E(2023).Plant Hormone Transport and Localization: Signaling Molecules on the Move.Annu Rev Plant Biol, 74:453-479.
文章导航

/