虞健翔, 蔡雯, 陈心亦, 刘烯烯, 于茂桢, 余灯雄, 戴绍军, 李丹丹, 于晶*
收稿日期:
2025-05-28
修回日期:
2025-08-06
出版日期:
2025-09-03
发布日期:
2025-09-03
通讯作者:
于晶
基金资助:
Jianxiang Yu, Wen Cai, Xinyi Chen, Xixi Liu, Maozhen Yu, Dengxiong Yu, Shaojun Dai, Dandan Li, Jing Yu*
Received:
2025-05-28
Revised:
2025-08-06
Online:
2025-09-03
Published:
2025-09-03
Contact:
Jing Yu
摘要: 苔藓植物蛋白质组学的研究对于揭示植物适应陆地环境的分子机制具有重要意义。作为最早登陆的植物之一, 苔藓植物提供了一个独特的模型系统, 用于研究植物如何适应陆地环境的变化。通过蛋白质组学的方法, 我们可以深入了解苔藓植物在逆境响应、生长发育和进化过程中的分子机制, 这对于揭示植物适应性的演化历程和机制具有重要价值。此外, 苔藓植物蛋白质组学的研究也为植物科学研究提供了新的视角和工具, 有助于我们理解植物对环境变化的响应和适应策略。本文综述了苔藓植物蛋白质组学在非生物胁迫响应、生长发育调控、蛋白质修饰、细胞器功能、代谢过程与进化适应等方面的研究进展, 以及其在植物适应性研究中的重要性。
虞健翔, 蔡雯, 陈心亦, 刘烯烯, 于茂桢, 余灯雄, 戴绍军, 李丹丹, 于晶. 苔藓植物蛋白质组学研究进展. 植物学报, DOI: 10.11983/CBB25094.
Jianxiang Yu, Wen Cai, Xinyi Chen, Xixi Liu, Maozhen Yu, Dengxiong Yu, Shaojun Dai, Dandan Li, Jing Yu. Research Progress in Bryophyte Proteomics. Chinese Bulletin of Botany, DOI: 10.11983/CBB25094.
[1]Amagai A, Honda Y, Ishikawa S, Hara Y, Kuwamura M, Shinozawa A, Sugiyama N, Ishihama Y, Takezawa D, Sakata Y, Shinozaki K, Umezawa T(2018).Phosphoproteomic profiling reveals ABA-responsive phosphosignaling pathways in Physcomitrella patens.Plant J, 94:699-708. [2]Chamorro-Flores A, Tiessen-Favier A, Gregorio-Jorge J, Villalobos-López M A, Guevara-García á A, López-Meyer M, Arroyo-Becerra A(2020).High levels of glucose alter Physcomitrella patens metabolism and trigger a differential proteomic response.PLoS One, 15:e0242919-e0242919. [3]Chen C, Hou J, Tanner J J, Cheng J(2020).Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis.Int J Mol Sci, 21:2873-2873. [4]Chen X, Wei S, Ji Y, Guo X, Yang F(2015).Quantitative proteomics using SILAC: Principles,applications,and developments.Proteomics, 15:3175-3192. [5]Cho S H, Hoang Q T, Kim Y Y, Shin H Y, Ok S H, Bae J M, Shin J S(2006).Proteome analysis of gametophores identified a metallothionein involved in various abiotic stress responses in Physcomitrella patens.Plant Cell Rep, 25:475-488. [6]Cruz D E C R, Bernardes D a S A, Soares R, Almeida A M, Coelho A V, Marques D a S J, Branquinho C(2014).Differential proteomics of dehydration and rehydration in bryophytes: evidence towards a common desiccation tolerance mechanism.Plant Cell Environ, 37:1499-1515. [7]Cui S, Hu J, Guo S, Wang J, Cheng Y, Dang X, Wu L, He Y(2012).Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration.J Exp Bot., 63:711-726. [8]Decker E L, Reski R(2020).Mosses in biotechnology.Curr Opin Biotechnol, 61:21-27. [9]Fernandez-Pozo N, Haas F B, Gould S B, Rensing S A(2022).An overview of bioinformatics,genomics,and transcriptomics resources for bryophytes.J Exp Bot, 73:4291-4305. [10]Fr?hlich K, Fahrner M, Brombacher E, Seredynska A, Maldacker M, Kreutz C, Schmidt A, Schilling O(2024).Data-Independent Acquisition: A Milestone and Prospect in Clinical Mass Spectrometry-Based Proteomics.Mol Cell Proteomics, 23:100800-100800. [11]Guihur A, Fauvet B, Finka A, Quadroni M, Goloubinoff P(2021).Quantitative proteomic analysis to capture the role of heat-accumulated proteins in moss plant acquired thermotolerance.Plant Cell Environ, 44:2117-2133. [12]Heidari P, Rezaee S, Hosseini Pouya H S, Mora-Poblete F(2024).Insights into the Heat Shock Protein 70 (Hsp70) Family in Camelina sativa and Its Roles in Response to Salt Stress.Plants (Basel), 13:3410-3410. [13]Heintz D, Erxleben A, High A A, Wurtz V, Reski R, Van Dorsselaer A, Sarnighausen E(2006).Rapid alteration of the phosphoproteome in the moss Physcomitrella patens after cytokinin treatment.J Proteome Res., 5:2283-2293. [14]Hembach L, Niemeyer P W, Schmitt K, Zegers J M S, Scholz P, Brandt D, Dabisch J J, Valerius O, Braus G H, Schwarzl?nder M, De Vries J, Rensing S A, Ischebeck T(2024).Proteome plasticity during Physcomitrium patens spore germination - from the desiccated phase to heterotrophic growth and reconstitution of photoautotrophy.Plant J, 117:1466-1486. [15]Hoernstein S N, Mueller S J, Fiedler K, Schuelke M, Vanselow J T, Schuessele C, Lang D, Nitschke R, Igloi G L, Schlosser A, Reski R(2016).Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens.Mol Cell Proteomics, 15:1808-1822. [16]Hoernstein S N W, Fode B, Wiedemann G, Lang D, Niederkrüger H, Berg B, Schaaf A, Frischmuth T, Schlosser A, Decker E L, Reski R(2018).Host Cell Proteome of Physcomitrella patens Harbors Proteases and Protease Inhibitors under Bioproduction Conditions.J Proteome Res, 17:3749-3760. [17]Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, Sheng X, Zhao F, Chen Z, Ding Y, Yuan H, Wu X, Xing S, Yan X, Bao F, Wan P, Xiao L, Wang X, Xiao W, Decker E L, Van Gessel N, Renault H, Wiedemann G, Horst N A, Haas F B, Wilhelmsson P K I, Ullrich K K, Neumann E, Lv B, Liang C, Du H, Lu H, Gao Q, Cheng Z, You H, Xin P, Chu J, Huang C-H, Liu Y, Dong S, Zhang L, Chen F, Deng L, Duan F, Zhao W, Li K, Li Z, Li X, Cui H, Zhang Y E, Ma C, Zhu R, Jia Y, Wang M, Hasebe M, Fu J, Goffinet B, Ma H, Rensing S A, Reski R, He Y(2023).Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet.Cell., 186:3558-3576. [18]Hung C W, Tholey A(2012).Tandem mass tag protein labeling for top-down identification and quantification.Anal Chem, 84:161-170. [19]Jain A, Singh H B, Das S(2021).Deciphering plant-microbe crosstalk through proteomics studies.Microbiological Research, 242:126590-126590. [20]Kolkas H, Balliau T, Chourré J, Zivy M, Canut H, Jamet E(2021).The Cell Wall Proteome of Marchantia polymorpha Reveals Specificities Compared to Those of Flowering Plants.Front Plant Sci, 12:765846-765846. [21]Krasny L, Huang P H(2021).Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology.Mol Omics, 17:29-42. [22]Lang E G, Mueller S J, Hoernstein S N, Porankiewicz-Asplund J, Vervliet-Scheebaum M, Reski R(2011).Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for sub-cellular proteomics.Plant Cell Rep, 30:205-215. [23]Li X, Yang R, Liang Y, Gao B, Li S, Bai W, Oliver M J, Zhang D(2023).The ScAPD1-like gene from the desert moss Syntrichia caninervis enhances resistance to Verticillium dahliae via phenylpropanoid gene regulation.Plant J, 113:75-91. [24]Lueth V M, Reski R(2023).Mosses.Curr Biol, 33:R1175-R1181. [25]Luo W, Komatsu S, Abe T, Matsuura H, Takahashi K(2020).Comparative Proteomic Analysis of Wild-Type Physcomitrella Patens and an OPDA-Deficient Physcomitrella Patens Mutant with Disrupted PpAOS1 and PpAOS2 Genes after Wounding.Int J Mol Sci, 21:1417-1417. [26]Mann M, Kumar C, Zeng W F, Strauss M T(2021).Artificial intelligence for proteomics and biomarker discovery.Cell Syst, 12:759-770. [27]Mergner J, Kuster B(2022).Plant Proteome Dynamics.Annu Rev Plant Biol, 73:67-92. [28]Mueller S J, Lang D, Hoernstein S N, Lang E G, Schuessele C, Schmidt A, Fluck M, Leisibach D, Niegl C, Zimmer A D, Schlosser A, Reski R(2014).Quantitative analysis of the mitochondrial and plastid proteomes of the moss Physcomitrella patens reveals protein macrocompartmentation and microcompartmentation.Plant Physiol, 164:2081-2095. [29]Panteli? A, Stevanovi? S, Komi? S M, Kilibarda N, Vidovi? M(2022).In Silico Characterisation of the Late Embryogenesis Abundant (LEA) Protein Families and Their Role in Desiccation Tolerance in Ramonda serbica Panc.Int J Mol Sci, 23:3547-3547. [30]Peng Y, Ma T, Wang X, Zhang M, Xu Y, Wei J, Sha W, Li J(2023).Proteomic and Transcriptomic Responses of the Desiccation-Tolerant Moss Racomitrium canescens in the Rapid Rehydration Processes.Genes (Basel), 14:390-390. [31]Rensing S A, Goffinet B, Meyberg R, Wu S Z, Bezanilla M(2020).The Moss Physcomitrium (Physcomitrella) patens: A Model Organism for Non-Seed Plants.Plant Cell, 32:1361-1376. [32]Santos H M, Lodeiro C, Capelo J L(2020).Label-free quantification and post-translational modifications.J Proteomics, 229:103962-103962. [33]Sarnighausen E, Wurtz V, Heintz D, Van Dorsselaer A, Reski R(2004).Mapping of the Physcomitrella patens proteome.Phytochemistry, 65:1589-1607. [34]Unwin R D, Griffiths J R, Whetton A D(2010).Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MSMS.Nat Protoc, 5:1574-1582. [35]Urban P L(2016).Quantitative mass spectrometry: an overview.Philos Trans A Math Phys Eng Sci, 374:20150382-20150382. [36]Wadhwa N, Singh D, Yadav R, Kapoor S, Kapoor M(2023).Role of TRDMT1/DNMT2 in stress adaptation and its influence on transcriptome and proteome dynamics under osmotic stress in Physcomitrium patens.Physiol Plant, 175:e14014-e14014. [37]Wang X, Chen L, Yang A, Bu C, He Y(2017).Quantitative Proteomics Analysis of Developmental Reprogramming in Protoplasts of the Moss Physcomitrella patens.Plant Cell Physiol, 58:946-961. [38]Wang X, Kuang T, He Y(2010).Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis.BMC Plant Biol, 10:192-192. [39]Wang X, Qi M, Li J, Ji Z, Hu Y, Bao F, Mahalingam R, He Y(2014).The phosphoproteome in regenerating protoplasts from Physcomitrella patens protonemata shows changes paralleling postembryonic development in higher plants.J Exp Bot, 65:2093-2106. [40]Wang X, Yang P, Gao Q, Liu X, Kuang T, Shen S, He Y(2008).Proteomic analysis of the response to high-salinity stress in Physcomitrella patens.Planta, 228:167-177. [41]Wang X, Yang P, Zhang X, Xu Y, Kuang T, Shen S, He Y(2009).Proteomic analysis of the cold stress response in the moss,Physcomitrella patens.Proteomics, 9:4529-4538. [42]Wang X, Zhou S, Chen L, Quatrano R S, He Y(2014).Phospho-proteomic analysis of developmental reprogramming in the moss Physcomitrella patens.J Proteomics, 108:284-294. [43]Wang X Q, Yang P F, Liu Z, Liu W Z, Hu Y, Chen H, Kuang T Y, Pei Z M, Shen S H, He Y K(2009).Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy.Plant Physiol, 149:1739-1750. [44]Yan K, Ablimit M, Liu S, Liu Z, Wang Y(2023).A novel metallothionein gene HcMT from halophyte shrub Halostachys caspica respond to cadmium and sodium stress.Plant Physiol Biochem, 201:107763-107763. [45]Yasui Y, Tsukamoto S, Sugaya T, Nishihama R, Wang Q, Kato H, Yamato K T, Fukaki H, Mimura T, Kubo H, Theres K, Kohchi T, Ishizaki K(2019).GEMMA CUP-ASSOCIATED MYB1,an Ortholog of Axillary Meristem Regulators,Is Essential in Vegetative Reproduction in Marchantia polymorpha.Curr Biol, 29:3987-3995. [46]Yu X, Liu Z, Sun X(2023).Single-cell and spatial multi-omics in the plant sciences: Technical advances, applications, and perspectives.Plant Commun, 4:100508-100508. [47]Yu Z, Ni J, Sheng W, Wang Z, Wu Y(2017).Proteome-wide identification of lysine 2-hydroxyisobutyrylation reveals conserved and novel histone modifications in Physcomitrella patens.Sci Rep, 7:15553-15553. [48]Zhang G-L, Feng C, Kou J, Han Y, Zhang Y, Xiao H-X(2023).Phylogeny and divergence time estimation of the genus Didymodon (Pottiaceae) based on nuclear and chloroplast markers.Journal of Systematics and Evolution, 61:115-126. [49]Zhang Y, Berman A, Shani E(2023).Plant Hormone Transport and Localization: Signaling Molecules on the Move.Annu Rev Plant Biol, 74:453-479. |
[1] | 张璐璐, 任昭杰, 于宁宁, 赵奉熙, 赵遵田. 甘肃省苔藓植物名录[J]. 生物多样性, 2025, 33(6): 24451-. |
[2] | 韩佳楠, 苏杨, 李霏, 刘君妍, 赵依林, 李琳, 赵建成, 梁红柱, 李敏. 河北省苔藓植物多样性[J]. 生物多样性, 2024, 32(9): 24096-. |
[3] | 吴相獐, 雷富民, 单壹壹, 于晶. 上海城市公园苔藓植物多样性分布格局及其环境影响因子[J]. 生物多样性, 2024, 32(2): 23364-. |
[4] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[5] | 陈星, 涂淑雯, 戴尊, 高爽, 王幼芳, 邢诗晨, 魏博嘉, 唐录艳, 师瑞萍, 王晓蕊, 刘永英, 赵东平, 唐霞, 姚雪, 赵明水, 吴晗星, 祁祥斌, 张健, 李敏, 王健. 浙江天目山国家级自然保护区苔藓植物多样性[J]. 生物多样性, 2023, 31(4): 22649-. |
[6] | 邓昶, 郝杰威, 高德, 任明迅, 张莉娜. 海南受威胁苔藓植物适生热点区域识别与保护[J]. 生物多样性, 2023, 31(4): 22580-. |
[7] | 王艺宸, 邓芝燕, 张守信, 肖楚楚, 冯广, 龙文兴, 刘积史. 海南热带云雾林附生维管植物对宿主的选择性[J]. 植物生态学报, 2022, 46(4): 405-415. |
[8] | 邢诗晨, 唐录艳, 戴尊, 涂淑雯, 陈星, 张建行, 李宏庆, 彭涛, 王健. 安徽石台县与青阳县苔藓植物多样性[J]. 生物多样性, 2022, 30(1): 21186-. |
[9] | 戴尊, 陈星, 张建行, 朱毛洁, 宋坤, 邢诗晨, 涂淑雯, 邹璐, 雷祖培, 李宏庆, 王健. 浙江乌岩岭国家级自然保护区叶附生苔类及附主植物多样性[J]. 生物多样性, 2022, 30(1): 21229-. |
[10] | 师雪芹, 王健. 安徽省苔藓植物名录[J]. 生物多样性, 2021, 29(6): 798-804. |
[11] | 刘凌, 樊英杰, 宋晓彤, 李敏, 邵小明, 王晓蕊. 色季拉山不同腐解等级华山松倒木上的苔藓植物组合[J]. 植物生态学报, 2020, 44(8): 842-853. |
[12] | 白杨, 陈声文, 钱海源, 余顺海, 徐谊明, 张芷昕, 沈超, 陈雨奇, 张美琪, 余建平, 朱瑞良. 钱江源国家公园叶附生苔类植物的物种多样性[J]. 生物多样性, 2020, 28(2): 231-237. |
[13] | 刘艳, 杨钰爽. 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性[J]. 生物多样性, 2019, 27(6): 677-682. |
[14] | 蒙文萍, 戴全厚, 冉景丞. 苔藓植物岩溶作用研究进展[J]. 植物生态学报, 2019, 43(5): 396-407. |
[15] | 何强, 贾渝. 中国苔藓植物濒危等级的评估原则和评估结果[J]. 生物多样性, 2017, 25(7): 774-780. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||