研究论文

岩白菜TCP基因家族的表达模式及代谢关联分析

  • 陈靖彧 ,
  • 王文庆 ,
  • 罗诗语 ,
  • 杨路祥 ,
  • 汪慧骏 ,
  • 吴天宇 ,
  • 朱乾坤
展开
  • 1西南交通大学生命科学与工程学院, 成都 610031; 2四川省成都市石室中学, 成都 610041

收稿日期: 2025-01-16

  修回日期: 2025-04-22

  网络出版日期: 2025-05-14

基金资助

国家自然科学基金(No.31900164)、西南交通大学基础培育计划医工结合专项(No.2682023ZTPY073)和西南交通大学SRTP项目(No.2024152, No.2024156)

Expression Pattern and Metabolic Correlation Analysis of TCP Gene Family in Bergenia purpurascens

  • CHEN Jing-Yu ,
  • YU Wen-Qiang ,
  • LUO Shi-Yu ,
  • YANG Lu-Xiang ,
  • WANG Hui-Jun ,
  • WU Tian-Yu ,
  • ZHU Qian-Kun
Expand
  • 1College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2Chengdu Shishi High School of Sichuan Province, Chengdu 610041, China

Received date: 2025-01-16

  Revised date: 2025-04-22

  Online published: 2025-05-14

摘要

TCP蛋白家族是植物特有的一类转录因子家族, 在植物生长发育及响应胁迫过程中发挥着重要作用。为了解岩白菜(Bergenia purpurascens) BpTCP基因家族的功能, 本研究基于转录组测序数据, 利用生物信息学方法对岩白菜BpTCP基因家族进行了系统鉴定与分析。研究共鉴定出16个BpTCP基因, 可分为2大类, 所有BpTCP基因均含有保守的TCP结构域, 相同进化枝的BpTCP蛋白所含基序类型相似。表达模式分析表明, 不同BpTCP基因在不同组织中的表达水平存在差异。在低温胁迫条件下, BpTCP10BpTCP1BpTCP12的表达出现显著变化。BpTCP基因家族表达水平与次级代谢物含量的相关性分析显示, 部分BpTCP基因的表达与黄酮类、酚类等多种代谢物的含量之间存在显著相关性。本研究为进一步探究BpTCP基因在岩白菜生长发育、低温胁迫响应及次生代谢合成途径中的生物学功能奠定了基础。

本文引用格式

陈靖彧 , 王文庆 , 罗诗语 , 杨路祥 , 汪慧骏 , 吴天宇 , 朱乾坤 . 岩白菜TCP基因家族的表达模式及代谢关联分析[J]. 植物学报, 0 : 1 -0 . DOI: 10.11983/CBB25008

Abstract


INTRODUCTION:
The TCP protein family is a plant-specific group of transcription factors known to regulate key biological processes, including growth, development, and stress responses. Despite their critical roles, the TCP gene family in Bergenia purpurascens remains uncharacterized. This study aims to systematically identify and analyze the BpTCP gene family in B. purpurascens using transcriptome-based bioinformatics approaches, providing insights into their potential functions in cold adaptation and secondary metabolism.



RATIONALE: B. purpurascens exhibits remarkable resilience to abiotic stresses, particularly cold, and contains abundant secondary metabolites. Given the documented roles of TCP genes in stress responses and metabolic regulation in other plants, we hypothesized that BpTCP genes may contribute to these traits. A comprehensive analysis of this gene family could reveal novel mechanisms underlying stress adaptation and metabolite synthesis, supporting future genetic improvement or biotechnological applications.



RESULTS: Through transcriptome-based bioinformatics analysis, we identified 16 BpTCP genes in B. purpurascens, which were phylogenetically classified into two major groups, with all members containing conserved TCP domains and closely related proteins sharing similar motif patterns. Tissue-specific expression profiling revealed distinct spatial expression patterns across different tissues, suggesting functional diversification among family members. Notably, partial genes, including BpTCP10, BpTCP1 and BpTCP12, exhibited significant expression changes under cold stress, implying their potential cold-responsive roles. Furthermore, expression levels of specific BpTCP genes correlated significantly with accumulation of various secondary metabolites, particularly flavonoids and phenolics, suggesting their regulatory involvement in metabolic pathways.



CONCLUSION: This study provides the first genome-wide characterization of the BpTCP gene family in B. purpurascens, demonstrating its potential roles in growth, cold stress response, and secondary metabolism. The differential expression of BpTCP genes under stress and their correlation with metabolite levels lay a foundation for future functional studies.



      



Expression pattern and metabolic correlation analysis of TCP gene family in Bergenia purpurascens.  A total of 16 BpTCP genes were identified in Bergenia purpurascens and classified into two major phylogenetic groups. All BpTCP genes contain conserved TCP domains, and proteins from the same evolutionary branch share similar motif compositions. Different BpTCP genes exhibit distinct tissue-specific expression patterns and display distinctive responses to cold stress. Furthermore, certain BpTCP genes demonstrate significant correlations with the accumulation of diverse metabolites.




参考文献

Agnihotri V, Sati P, Jantwal A, Pandey A (2015). Antimicrobial and antioxidant phytochemicals in leaf extracts of Bergenia ligulata: a Himalayan herb of medicinal value. Nat Prod Res 29, 1074-1077.
Aguilar-Martinez J A, Sinha N (2013). Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front Plant Sci 4, 406.
Braun N, de Saint Germain A, Pillot J P, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C (2012). The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching. Plant Physiol 158, 225-238.
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R (2020). TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant 13, 1194-1202.
Cubas P, Lauter N, Doebley J, Coen E (1999). The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18, 215-222.
Herve C, Dabos P, Bardet C, Jauneau A, Auriac M C, Ramboer A, Lacout F, Tremousaygue D (2009). In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development. Plant Physiol 149, 1462-1477.
Kosugi S, Ohashi Y (1997). PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. The Plant Cell 9, 1607-1619.
Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2010). TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22, 3574-3588.
Liu Y J, An J P, Gao N, Wang X, Chen X X, Wang X F, Zhang S, You C X (2022). MdTCP46 interacts with MdABI5 to negatively regulate ABA signalling and drought response in apple. Plant Cell Environ 45, 3233-3248.
Manassero N G U, Viola I L, Welchen E, Gonzalez D H (2013). TCP transcription factors: architectures of plant form. 4, 111-127.
Martin-Trillo M, Cubas P (2010). TCP genes: a family snapshot ten years later. Trends Plant Sci 15, 31-39.
Nag A, King S, Jack T (2009). miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA 106, 22534-22539.
Panche A N, Diwan A D, Chandra S R (2016). Flavonoids: an overview. Journal of Nutritional Science 5, e47.
Perez M, Guerringue Y, Ranty B, Pouzet C, Jauneau A, Robe E, Mazars C, Galaud J P, Aldon D (2019). Specific TCP transcription factors interact with and stabilize PRR2 within different nuclear sub-domains. Plant Science 287, 110197.
Takeda T, Amano K, Ohto M A, Nakamura K, Sato S, Kato T, Tabata S, Ueguchi C (2006). RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development. Plant Mol Biol 61, 165-177.
Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E (2008). Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. Plant J 53, 42-52.
Uberti-Manassero N G, Lucero L E, Viola I L, Vegetti A C, Gonzalez D H (2011). The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. Journal of Experimental Botany 63, 809-823.
Viola I L, Gonzalez D H (2023). TCP Transcription Factors in Plant Reproductive Development: Juggling Multiple Roles. Biomolecules 13, 750.
Wang M Y, Zhao P M, Cheng H Q, Han L B, Wu X M, Gao P, Wang H Y, Yang C L, Zhong N Q, Zuo J R, Xia G X (2013). The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation. Plant Physiol 162, 1669-1680.
Wu J F, Tsai H L, Joanito I, Wu Y C, Chang C W, Li Y H, Wang Y, Hong J C, Chu J W, Hsu C P, Wu S H (2016). LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun 7, 13181.
Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H (2023). Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res 51, W587-W592.
Yan R, Xie B, Xie K, Liu Q, Sui S, Wang S, Chen D, Liu J, Chen R, Dai J, Yang L (2024). Unravelling and reconstructing the biosynthetic pathway of bergenin. Nat Commun 15, 3539.
Yongsi Z, Changmin L, Xiaohong L J L, Shoumin F, Yunxiang L, Daowen H (2011). Biological advances in Bergenia genus plant. African Journal of Biotechnology 10, 8166-8169.
Zhang G, Zhao H, Zhang C, Li X, Lyu Y, Qi D, Cui Y, Hu L, Wang Z, Liang Z, Cui S (2019). TCP7 functions redundantly with several Class I TCPs and regulates endoreplication in Arabidopsis. Journal of Integrative Plant Biology 61, 1151-1170.
Zhang S, Gai Z, Gui T, Chen J, Chen Q, Li Y (2021). Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. Evidence-Based Complementary and Alternative Medicine 2021, 6139308.
Zhang S S, Liao Z X, Huang R Z, Gong C C, Ji L J, Sun H F (2018). A new aromatic glycoside and its anti-proliferative activities from the leaves of Bergenia purpurascens. Nat Prod Res 32, 668-675.
Zhang X, Yu F, Lyu X, Chen J, Zeng H, Xu N, Wu Y, Zhu Q (2023). Transcriptome profiling of Bergenia purpurascens under cold stress. BMC Genomics 24, 754.
Zhu Q, Wu Y, Zhang X, Xu N, Chen J, Lyu X, Zeng H, Yu F (2024). Metabolomic and transcriptomic analyses reveals candidate genes and pathways involved in secondary metabolism in Bergenia purpurascens. BMC Genomics 25, 1083.
文章导航

/

674-3466/bottom_cn.htm"-->